An Introduc

Database Systems

C.J. Date

A by

01 LTRLLMIET s A

PAWERM AT MRS IS TG FR R TG UL AR ALV T M KN Tt G L i

An Introduction to

atabase

o

B ' The materal covered inAn 1 Introductior: to-Database S_yggqms
.-fsorgamzed mtc szxm JOr Darks s P ma SR

* Part I (four chapters) provides a broad introduction to the concepts of database
systems in general and relational systems in particular. It also introduces the
standard database language. SQL.

* Part II {six chapters) consists of a detailed and very careful description of the
relational model. which is not only the theoretical foundation underlying rela-
. tional systems but is, in fact. the theoreucal foundation for the entire database
field.

* Part ITI (four'chapters) discusses the general question of database design. Three
chapters are devoted to design theory. and the fourth conmders semantic model-
ing and the entity/relationship model

* Part [V (two chapters) is co_ncemed with transaction management (i.e., recovery
and concurrency controls). -

= Part V (eight chapters) shows how relational concepts are relevant to a variety of
further aspects of database technology—security. distributed databases. temporal
data. decision support. and so on.

* Part VI (three chapters) describes the impact of object technology on database
svstems. Chapter 25 describes object systems specificaily: Chapter 26 considers
the possibility of a rapprochement begween object and relational technologies and
discusses objectlrelauonal systems; and Chapter 27 addresses the relevance to
databases of XML.

hr——— “w’!"ﬁ""‘"""ﬂ

About the Author { - C.J.DATE is an author. lecturer. researcher. and independent

consultant specializing in relational database systems. An active

member of the database community for nearly 35 vears. C. J.
Date devotes the major part of his career to exploring. expanding.

and expounding the theory and practice of relational technology.

He enjoys a reputation second to none for his ability to explain

complex technical material in a clear and understandable fashion.

-

i

L
?
]

T
[]

™

i

“[C. J. Date’s] book i the flag bearer of relational theory and mathematical treat-
ment in general...as well as the runaway leader in discussing the SQL standards.
It exercises much more respect for careful language and the imporntance of con-
cepts and principles in gaining mastery of the fieid.”

—CARL ECKBERG. San Diego State University

[The| Sth Edition is an excellent and comprehensive presentation of the contem-
porary database field. In particular, Date’s chapters on types. relations, object
databases. and object-relational databases together provide an exceptionally clear,
self-contained exposition of the object-relational approach to databases.™

—MAaRTIN K. SOLOMON, Florida Atlantic:University

“Chris Date is the computer industry’s most respected expert and thinker on data-
base technology. and his book An fnrraduction to Darabase Systems continues to
" be the definitive work for those wanting a compreliensive and current guide to
database systems.™

--COLlN J. WHITE. President, [ntelligent Bu.sine:s Strategies ” ‘ L é“ 8

*This is the best explanation of concurrency that { have s¢en in literature. and it '
covers the ground quite thoroughly.”
-—-BRUC!-; O. LARSEN. Stevens [nstitute of Technology

..both an indispensabie read and an indispensable reterence. No serious mtorma-
tion systems or database practitioner should be wuhout this book.”

—DECLAN Brapy, MICS, Systems Architect and Database Specialist. Fujitsu

“The author’s deep insights into the area. informal treatment of profound topics.
open-ended discussions of critical issues. comprehensive and up-to-date contents,
as well as rich annotations on bibliography have made the book most popular in
the database area for more than two decades.”

—QIANG ZHU. The University of Michigan, Dearborn

1

“[The book’s] appeal is its comprehensiveness and the fact that it is very up-to-
date with research developments. The latter factor is due mainly to {Date's} in-
volvement with these developments. which gives him a unique opportunity to
write about them,” ,

—DavID LivINGSTONE. University of Northumbria at Newcasile

.....

pa N

2

g

Senior Acquisitions Editor: Maite Suarez-Rivas®)
Project Editor: Katherine Harutunian) [RIERT -
Marketing Manager: Nathan Schultz ‘ T ‘
Production Supervisor: Marilyn Lloyd o ' \
Project Management: Elisabeth Beller :
Composirion: Nancy Logan

Technical Art: Dartmouth Publishing, Inc
Copyeditor: Daril Bentley

Proofreader: Jennifer McClain Lo R
Design Manager: Joyce Cosentino Wells ' o

. Cover Design: Night & Day Design
" Cover Image: Lindy Date

Prepress and Manufacturing: Caroline Fell

Access the Jatest information about Add:son-Wesley titles from our World Wide ch site:
hutp:/fwww.aw.com/cs :

L] -

Many of the designations used by manufacturers and sellers to distinguish their products are claimed

- as trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a

trademark claim, the designations have been printed in initial caps or all caps.

The programs and applications presented in tl'us book have. bccn included fot their msu'ucnona.l
value. They have been tested with care but are not guaranteed for any purpose. 'fhc Sublisher does
not offer any warranties or representations, nor does it accept any liabilities with respec! to the ..

programs or applications.

If you purchased this book within the United States or Canada you should be aware (hat it has been
wrong(ully imported without the approval of the Publisher or the Amhor

Copyright © 2004 by Pearson Education, Inc.
All rights reserved. No part of this publication may be reproduced. stored in 2 retrieval system, or
transmitted. in any form or by any means, electronic, mechanical, photocopying, recording, or other-
wise, without the prior written permission of the publisher. Printed in the United States of America.

ISBN 0-321-18956-6

23456789 10-HAM-06050403 . -

T .‘..’""J.

-

i

This book is dedicated to my wife Lindy
and to the memory of my mother Rene—

also to the memory of Ted Codd, who, sadly,
passed away as this book was going to press

Those who cannot remember the past
are condemned to repeat it

Usually quoted in the form:

Those who don’t know history are
doomed to repeat it

—George Santayana

I would like to see computer science
teaching set deliberately

in a historical framework. ..
Students need o understand

how the present sitwation has come
about, what was tried,

what worked and what did not, and
how improvements in hardware
made progress possible. The absence
-of this element in

their training causes peopie to
approach every problem from

first principles. They are apt to
‘propose solutions that

have been found wanting in the past.
Instead of standing

on the shoulders of their precursors,
they try to go it alone.

—Maurice V. Wilkes

D ortrp L. b e i s iy ity b e a bttt L R LTI
b Goe oty .y

C. J. Rate is an independent author, lecturer, researcher, and consultant, specializing in
relational database technology. He is based in Healdsburg, California,

In 1967, following several years as a mathematical programmer and programming
instructor for Leo Computers Ltd. (London, England), Mr. Date moved to the IBM (UK)
Development Laboratories, where he worked on the integration of database functionality
into PL/I. In 1974 he transferred to the IBM Systems Development Center in California.
where he was responsible for the design of a database Janguage known as the Unified
Database Language, UDL, and worked 6n technical planning and externals design for the
IBM products SQL/DS and DB2. He left IBM in May, 1983.

Mr. Date has been active in the database field for well over 30 years, He was one of
the first peoplc anywhere to recognize the szgmﬁcancc of Codd’s pioneering work on the
relational model. He has lectured widely on teclinical subjects——principally on database
topics, and especially on relational database—throughout North America and also in
Europe, Australia, Latin America, and the Far East. In addition 1o the present book, he is
* author or coauthor of a number of other database texts, including, from Morgan Kauf-
mann. Jemporal Data and the Relational Model (2003) and, from Addison-Wesley, Foun-
darion for Future Database Systems: The Third Manifesto (2nd edition. 2000), a detailed
proposal for the future direction of the field: Database: A Primer (1983), which treats
database systerns from the nonspecialist's point of view; a series of Relarional Database
Writings bocks (1986, 1990, 1992, 1995, 1998), which deal with various aspects of rela-
tional technology in depth: and another series of books on specific systemns and lan-
guages—A Guide 10 DB2 {4th edition, 1993), A Guide to SYBASE and SQL Server (1992),
A Guide 10 SQL/DS (1988), A Guide to INGRES (1987). and A Guide to the SQL Sian-
dard (4th edition. 1997). His books have been translated into several languages, including
Braille, Chinese, Dutch, French, German, Greek, Italian, Japanese, Korean, Polish, Portu-
guese, Russian. and Spanish.

Mr. Date has also produced over 300 technical amcles and research papers and has
made a vanety of original coniributions to database theory. For several years, he was a
regular columnist for the magazine Darabase Programming & Design. He also contrib-
utes regularly to the website htip:/#dbdebunk.com. His professional seminars on database
technology, offered both in North America and overseas, are widely considered to be sec-
ond to none for the guality of the subject matter and the clarity of the exposition.

Mr. Date holds an Honours Degree in Mathematics from Cambridge University,
England (BA 1962, MA 1966} and the hogorary degree of Doctor of Technology from De
Montfort University, England (1994).

LT NP

i 4 i .

.
. Lt
o - .
L oAty
“ N
LE-
JESTR
:
- -
L
.
A
.
-
.
e '.-ul_‘-l.-i)
- . LT
- . n‘ ']
.
P
v
-
- - 1,
-, -
H
. . 1
H
i

SR e e P e z

FEEE LN

.....

Contents

Chapter 1

1.1
1.2
13
1.4
1.5
1.6
1.7

Chapter 2

2.1
2.2
23
24
25
2.6
2.7
2.8
2.9
210
2.11
2.12
2.13

__Database Syster;l Architecture 33 . S .
Introduction 33 . - .

Preface to the Eighth Edition xxi

PARTI "PRELIMINARIES 1

.-
MaTe Ll
Ol

An Overview of Database Maﬁ'agement 3

Introduction 3 Loeste

What Is a Database System? 6 .

What Is a Database? 11 ‘ .-
Why Database? 16 A

" Data Independence 20

Relational Systems and Othets 26
Summary = 28
Exercises 29

'References and Bibliography 31

The Three Levels of the Architecture 34
The External Level © ~ 37

The Conceptual Level = 39

The Internal Level 40

Mappings 41

The Database Admuustrator 42

The Database Management System 44
Data Communications 48 .
Client/Server Architecture 49
Utilities 51

Distributed Processing 51

Summary 55

Exercises 56

References and Bibliography 56

ix
s * N

i bier ~_——

— e e T ',_.._J’

X Contents

Chapter 3

3.1
3.2
33
3.4
3.5
3.6
3.7
3.8
3.9
3.10

- Chapter 4

4.1
1.2
4.5
4.4
4.5
1.6
4.7
1.8
4.9

Chapter 5

5.1
52
53
24
w5
5.6

5.7

58

An Introduction to Relatonal Databases 59

Introduction 59 :
An Informal Look at the Relahonal Model 60
Relations and Relvars 64

What Relations Mean 66

Optimization 69

The Catalog 71

Base Relvars and Views 72

Transactions 76

The Suppliers-and-Parts Database 77
Summary 79

Exercises 81

References and Bibliography 81

An Introduction to SQL 85

Introduction 85

Overview 86

The Catalog = 89

Views 90

Transactions o1

Embedded SQL - 91

Dynamic SQL and SQL/CLI = 97
SQL Is'Not Perfect 100 -
Summary 101

Exercises 102 '
References and Bibliography 104

PART II THE RELATIONAL MODEL

TYPES 111

Introduction 111

Values vs. Variables 112

Types vs. Representations 115
Type Definition 119

Operators 122 -

Type Generators 127

SQL Facilities 128

Summary 136

Exercises 137

References and Bibliography 139

109

Chapter &

6.1
62
6.3
6.4
6.5
6.6
6.7

; Chapter 7

7.1
7.2
7.3
7.4
75
7.6
7.7
78
7.9
7.10

Chapter 8

8.1
8.2
8.3
8.4
85
8.6
8.7
88
8.9

Relations 141
Introduction 141

.Tuples 141

Relation Types 146

Relation Values 148

Relation Variables 156

SQL Facilities 161

Summary 167

Exercises 168 -

References and Bibliography 170

-

Relational Algebra 173
Introduction 173 FEL
Closure Revisited 175 -

The Original Algebra: Syntax 1-77
The Original Algebra: Semantics ™ . 180
Examples. 190

What Is the Algebra For? 192
Further Points 194 |
Additional Operators 195
Grouping and Ungroupmg 203
Summary

Exercises 207 K
References and Bibliography 209

Relational Calculus 213

Introduction 213

Tuple Calculus 215

Examples 223

Calculus vs. Algebra 225
Computational Capabilites 230
SQL Facilities 231 -

Domain Calculus ~ 240:
Query-By-Example 242
Summary 247"

Exercises 248 :

References and Bxbhography 250
'R

R d)

T

o mas ke g bt e

T

i) g b i i | o, et B] e

R S P P)

.....

xii Contents

Chapter9 Integrity 253

9.1 Introduction 253 : IR
9.2 Adloser Look 255 ri gy
9.3 Predicates and Propositions 258 o
9.4 Relvar Predicates and Database Predicates 259
9.5 Checking the Constraints 260
9.6 Internal vs. External Predicates 261 -
9.7 Correctness vs. Consistency 263
98 Integrityand Views 265
9.9 A Constraint Classification Scheme 266
9.10 Keys 268 | '
9.11 Triggers (a Digression) 277
9.12 SQL Faciliies = 279
913 Summary 284
Exercises - 285
References and Bibliography = 288

e — +

Chapter 10 Views 295

10.1 Introduction 295
102 What Are Views For? 298
i 10.3 View Retrievals 302
| 104 View Updates 303
; 10.5 Snapshots (a Digression) 318
10.6 SQL Facilities 320 ' :
10.7 Summary 323 SR ' o
Exercises 324 :
References and Bibliography 325

PARTIII DATABASE DESIGN 329

. Chapter11 Functional Dependencies 333

111 Introducton 333

112 Basic Definitions 334

11.3 Trivial and Nontrivial Dependencies 337
114 Closure of a Set of Dependencies 338
11.5 Closure of a Set of Attributes 339

A Ot 0 S g S i g Mk, Y

11.6
11.7

Chapter 12

12.1
12.2
12.3
124
125
12,6
12.7

Chapter 13

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8

Chapter 14

14.1
14.2
14.3
144
14.5
14.6
14,7

Irreducible Sets of Dependencies 341
Summary 343)
Exercises 344 .
References and Bibliography = 345

Further Nm:malization I: INE, 2NF, 3NF, BCNF
Introduction 349

Nonloss Decomposition and Functional Dependex_\aes

First, Second, and Third Normal Forms 357
Dependency Preservation .- 364
Boyce/Codd Normal Form 367

A Note on Relation-Valued Aftnbutes 373
Summary 375
Exercises 376

References and Bibliography .. 378

!

" Further Normalization II: Higher Normal For;ris

Introduction 381

Multi-valued Dependencies and Fourth Normal Form

Join Dependencies and Fifth Normal Form
The Normalization Procedure Summarized
A Note on Denormalization 393
Orthogonal Design (a Digression) . 393
Other Normal Forms 398

Summary 400

Exercises 401

References and Bibliography = 402

Semantic Modeling - 409

Introduction 409

The Overall Approach ; 411

The E/R Model 414,

E/R Diagrams 418

Database Design with the E/R Model 420
A Brief Analysis 424

Summary 428

Exercises = 429

References and Bibliography 430

.W.

-

)
—

.
LT Y EP K "
. R i} sy Aty ks W & g EARRTS l"“‘

xiv

Contents

Chapter 15

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9

Chapter 16

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10
16.11
16.12

Zhapter 17

17.1
17.2

PARTIV TRANSACTION MANAGEMENT

Recovery 445

Introduction 445
Transactions 446

Transaction Recovery 450
System Recovery 453

Media Recovery 455
Two-Phase Commit = 456
Savepoints (a Digression) 457
SQL Facilities = 458

Summary 459

Exercises ° 460

References and Bibliography 460

Concurrency 465

Introducdon 465

Three Concurrency Problems 466
Locking 470 '

The Three Concurrency Problems Revisited
Deadlock 474

“crializability 476 -

Rezovery Revisited 478

Isolation Levels 480

Intent Locking 483

Dropping ACID 485

SQL Facilities 490

Summary 491

Exercises 492

References and Bibliography 494

PARTV FURTHER TOPICS

Security 503

Introduction 503
Discretionary Access Control 506

472 .

501

443

L A o
S T i (s S Troae ¥

17.3
174
17.5
17.6
17.7

Chapter 18

18.1
18.2
18.3
18.4
18.5
. 18.6
18.7
18.8

Chapter 19

19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8

Chapter 20

20.1
20.2
20.3
20.4
20.5
20.6

Mandatory Access Control 511
Statistical Databases 513
Data Enayption 519

. SQL Facilities 523

Summary 527
Exercises 528

- References and Bibliography 529 |

Optimization 531

Introduction 531 :

A Motivating Example 533 _

An Overview of Query Processing 534
Expression Transformation.. : 539

Database Statistics 544"

A Divide-and-Conquer Strategy 545
Implementing the Relatxonal Operators 548
Summary 553 o

- Exercises 554

References and Bibliography 557

Missing Information 575
Introduction =~ 575
An Overview of the 3VL Approach 577

Some Consequences of the Foregoing Scheme
Nullsand Keys 586

. Outer Join (a Digression) 589

Special Values 591

SQL Facilities 592

Summary 597

Exercises 598

References and Bibliography =~ 600

Type Inheritance 605:

Introduction 605

Type Hierarchies 610

Polymorphism and Substitutability = 613
Variables and Assignments 617
Specialization by Constraint 621
Comparisons 623 .

A —y

582

Contents

xv

R e T

IR T e, R

T

oy o e 2

-

xvi Contents

. 207
208
20.9
20.10
20.11

Cha;_rter 21

21.1
21.2
21.3
214
21.5
21.6
21.7
21.8

Chapter 22

221
222
223
2.4
225
22.6
27
22.8
22.9

Chapter 23

23.1
23.2
233
23.4
23.5
23.6

Operators, Versions, and Signatures 626

Is a Circle an Ellipse? 630 '
Specialization by Constraint Revisited 634
SQL Facilities 636

Summary 641

Exercises 642

References and Bibliography = 644

Distributed Databases 647
introduction 647 |

Some Preliminaries 648

The Twelve Objectives 652

Problems of Distributed Systems 660
Client/Server Systems 671

DBMS Independence 674

SQL Facilittes 679

Summary 680

Exercises 681

References and Bibliography 682

Decision Support 689

Introduction 689

Aspects of Decision Support 691
Database Design for Decision Support 693
Data Preparation = 701

Data Warehouses and Data Marts 704
Online Analytical Processing 709
Data Mining 717

SQL Facilities 719

Summary 720

Exercises 721

References and Bibliography =~ 722

Temporal Databases 727

Introduction 727

What Is the Problem? 732

Intervals 737

Packing and Unpacking Relations 743
Generalizing the Relational Operators 754
Database Design . 758

23.8

Chapter 24

24.1
24.2
24.3
24.4
24.5
24.6
247
24.8

Chapter 25

25.1
25.2
253
25.4
25.5
25.6

Chapter 26

26.1
26.2
26.3
264

26.5

26.6
26.7

Integrity Constraints 764
Summary 770

Exercises 771

References and Bibliography

Logic-Based Databases 775

Introduction 775
Overview 776
Propositional Calculus 778
Predicate Calculus 783

772

A Proof-Theoretic View of Databases
Deductive Database Systems, :.. 793

3

Recursive Query Processing”.
Summary 803 .
Exercises 806

References and Bibliography® ~ 807

798

N

'789 :

—

Conients

PART VI OBJECTS, RELATIONS, AND XML ° 811 7"

Object Databases 813
Introduction 813-

Objects, Classes, Methods, and Messages

A Closer Look 822

A Cradle-to-Grave Example
Miscellaneous Issues 840
Summary 847
Exercises 850

References and Bibliography

Object/Relational Databases
Introduction 859

830-

851

859

The First Great Blunder 862

The Second Great Blunder
Implementation Issues 874
Benefits of True Rapprochement
SQL Facilities 878
Summary 885

Exercises 885

References and Bibliography

870

876

886

b S)

817

xvii

el

-
oon

~roroeepTppr—— i = mran ame p—
. edieish Pl s W e N7 gt B T
. . ey, e ® '

e e

- .
) e ettt s g 319 8 o

‘ . s
—

]
-

xviii Contents

Chapter 27 The Wosld Wide Web and XML - 895

27.1 Introduction 895
272 The Web and the Internet . 896
27.3 An Overview of XML 897
274 XML Data Definition 908
27.5 XML Data Manipulation 917
27.6 XML and Databases 925
27.7 SQL Facilities 928
278 Summary 932
Exercises 934 .
References and Bibliography 935

APPENDIXES 939

i
4]
'

Appendix A The TransRelational™ Model = 941

i A.1 Introduction - 941 . .
y A.2 Three Levels of Abstraction - 943
';; A3 TheBasicldea 946
A4 Condensed Columns 952
' A5 Merged Columns 956 ‘
A.6 Implementing the Relational Operators 960
A7 Summary 966 o '
References and Bibliography = 966

\ppendix B SQL Expressions = 967

B.1 Introduction 967
B.2 Table Expressions 968
B.3 Boolean Expressions 973

\ppendix C Abbreviations, Acronyms, and Symbols 977

.ppendix D Storage Structures and Access Methods (online at http:/fwww.aw.com [cssupport)

D.1 Introduction

D.2 Database Access: An Overview
D.3 Page Sets and Files

D.4 . Indexing

eme brm——— e —m———y—— 1t

——

T AT S S e Pl i T A I

L T o T . eitea. =

’
e

e .

D.5 Hashing
D.6 Pointer Chains
D.7 Compression Techniques
D.8° Summary. :
Exercises
References and Bibliography

Index I-1 ..

i
) b
of
i
:::‘
©
L
N
4
¥4
N
+
Lk
. 1
e i
¢!
- .
i
v
i
3
t
!
Kl
H
"
.
{
¢
]
-y
. at et

bk N

-

e

el

-

PREREQUISITES e

This book is a comprehensive introduction to the now very large’ﬁcld of database systems.
It provides a solid grounding in the foundations of database technology and gives some
idea as to how the field is likely to develop in the future. The book is meant primarily as a
tcxtbook. not a work of reference (though I hope and believe it can be useful as a reference
also, to some extent), The emphams throughout is on insight and understanding, not just
on formalisms. B . .

» i

The book as a whole is meant for anyone professionally interested in computing in some
way who wants to gain an understanding of what database systcms are all about. I assume
you have at least a basic knowledge of both: : :

= The storage and file management capablhnes (mdexmg. etc) of a modern computer
system .
¥ The features of at least one high-level programmm" languagc (Java, Pascal, PL/I,
etc.) . . IR
Regarding the. first of these prerequisites, howevcr, please note thnt a dctailed tutorial
on such matters can be found in the online Appendix D, “Storage,Sttuctures and Access
Methods.”

STRUCTURE

I have to say that I am a little embarrassed at the size of this book. The fact is, however, .
that database technology has become a very large field, and it is not possible to do it jus-
tice in fewer than 1,000 pages or so (indeed, most of the book's competitors are also about
1,000 pages). Be that as it may, the book overall is divided into six major parts:
L Basic Concepts

II. The Relational Model
III. Database Design

IV. Transaction Management

" D L LT

" =

-..!.'
¥

Ay .
.‘.‘“1 - N -‘.I--—-—..- - BT,

- xxit Preface to the Eighth Edition

V.
VL

Further Topics :
Objects, Relations, and XML

Each part in turn is divided into several chapters:

Part I (four chapters) provides a broad introduction to the concepts of database sys-
tems in general and relational systems in particular. It also introduces the standard
database language SQL. _

Part II (six chapters) consists of a detailed and very careful description of the rela.
tional model, which is not only the theoretical foundation underlying relational sys-
tems, but is in fact the theoretical foundation for the entire database field.

Part UI (four chapters) discusses the general question of database design; three

“chapters are devoted to design theory, the fourth considers semantic modelmg and the

entity/relationship model.

Part IV (two chapters) is concemed with transaction management (i.e., recovery
and concurrency controls).

Part V (eight chapters) is a little bit of a pompourri. In general, however, it shows how -

relational concepts are relevant to a variety of further aspects of database technol-
ozy—secunty, distributed databases, temporal data, decision support, and 50 on.

Finally, Part VI (three chnpters) describes the impact of object technology on data-
base systems. Chapter 25 describes object systems specifically; Chapter 26 considers
the possibility of a rapprochement between object and relational technologies and

discusses object!relational systems. and Chapter 27 addrcsses the relevance to data- -

: bascs ot‘ XML

T‘wre are, nlso four appendxxcs The first is an overview of a dramatic new and radi-
cally different implementation technology called The TransRelational™ Model; the
next gives a BNY grammar for SQL expressions; the third contains a glossary of the
more important abbreviations, acronyms, and symbols introduced in the body of the text;

and

the last is, as aiready explained, an online tutorial on storage structures and access

methods.

. DONLINE MATERIALS

The

following instructor supplements are available only to qualified instructors. For infor-

mation on accessing them, please contact your local Addison-Wesley Sales Representa-

tive,

or send e-mail to aw.cxe@aw.com.

An Instructor’s Manual provides guidance on how: to use the book as a basis for
teaching a database course. It consists of a series of notes, hints, and suggestions on
each part, chapter, and appendix, as well as other supporting material.

Answers to exercises {(inciuded in Instructor’s Manual)
Lecture slides in PowerPoint format

lhas . .

PRSP Y S AT - I TS PN A

N

Preface to the Eighth Edition xxiii

!
H
3
:
i
!
]
¥
i

The following supplements are avmlablc to afl readers of this book at Atp:/iwwwaw
.com/cssupport. i

% Appendix D on storage structures find access methods (as already mentioned) -
& Answers to a sclected subset of the exercises : ;

-

HOW TO READ THIS BOOK

The book overall is meant to be read in sequence more or less as wﬁtten. but you can skip
later chapters, and later sections within chapters, if you choose. A suggested plan for a
first reading would be: _

Read Chapters | and 2 “once over lightly.”

Read Chapters 3 and 4 very carefully (except perhaps for Sections 4.6 and 4.7).

Read Chapter 5 “once over li ghtly”

Read Chapters 6, 7, 9, and 10 carcfully. but skip Chapter 8 (except perhaps for Sec-
tion 8.6 on SQL). .

Read Chapter 11 “once over lightly." -
% Read Chapters 12 and 14 careﬂxlly.l but skip Chapter 13,

= Read Chapters 15 and 16 carefully (éxcept perhaps for Section 13.6 on two-phase
commiit).

® Read subsequent chapters selectively (but in sequence), acc.ordmg to taste and interest,

Each chapter opens with an introduction and closes with a summary: in addition,
most chapters include exercises, and the online answers often give additional information
about the topic of the exercise. Most chapters also include a set of references, many of
which are annotated. This structure allows the subject matter to be treated in a {ayered
fashion, with the most important concepts and resuits being presented “in line” in the
main body of the text and various subsidiary issues and more complex aspects being
deferred to the exercises or answers or references (as appropriate), Note: References are
identified by two-part numbers in square brackets. For example, the reference “3.1)"
refers to the first item in the list of references at the end of Chapter 3: namely, a paper by
E. F. Codd published in CACM 235, No. 2, in February, 1982, (For an explanation of abbre-

. viations used in references—e.g., “CACM"~-sec Appendix C.)
!

COMPARISON WITH EARLIER EDITIONS

" Wecan sununanze the major dxffcrenccs between this edition and its unmedmte predeces
sor as follows:’

% Part [: Chapters 1-4 cover rouzhly thc same ground as Chapters 1-4 in the seventh
edition, but they have been s:gmﬁcantly revised at the detail Jevel, In particular,

! You could also read Chapter 14 earlier if you like, possibly right after Chapter 4.

M

xdv

Preface to the Eighth Edition

Chapter 4, the introduction to SQL, has been upgraded to the level of the current stan-
dard SQL:1999, as indeed has SQL coverage throughout the entire book. (This fact
all by itself caused major revisions to more than half the chapters from the seventh
edition.) Nore: Facilities likely to be included in the next version of the standard—
which will probably be ratified in late 2003-—are also mentioned where appropriate.

Part [I: Chapters 5-10, on the relational model, are a totally rewritten, considerably
expanded, and very much improved version of Chapters 5-9 from the seventh edition,
In particular, the material on types—also known as domains—has been expanded
into a chapter of its own (Chapter 3), and the material on integrity (Chapter 9) has
been completely restructured and rethought. I hasten to add that the changes in these
chapters do not represent changes in the underlying concepts but. rather, changes in
how I have chosen to present them, based on my pracueal experience in teaching this
material in live presentations.

Note: Some further words of cxplananon are in order here. Earlier editions of the
book used SQL as a basis for teaching relational concepts, in the belief that it was
easier on the student to show the concrete before the abstract. Unfortunately, how-
ever, the gulf between SQL and the relational model grew and continued to grow,
ultimately reaching a point where I felt it would be actively misleading to use SQL
for such a purpose any longer. The sad truth is that SQL is now so far from being a
true embodiment of relational principles~~it suffers from so many sins of both omis-
sion and commission—that [would frankly prefer not to discuss it at all! However,
SQL is obviously important from a commercial point of view; thus, every database
professional needs to have some familiarity with it, and it would just not be appropri-
ate to ignore it in a book of this nature. I therefore settled on the strategy of including
{a) a chapter on SQL basics in Part I of the book and (b) individual sections in other
chapters, as applicable, describing those aspects of SQL that are specific to the sub-
ject of the chapter in question. In this way the book still provides comprehensive—
indeed, extensive—coverage of SQL material, but puts that coverage into what [feel
is the proper context. _

Part III: Chapters 10—13 are a mostly cosmetic revision of Chapters 9-12 from the

. seventh edition. There are detail-level improvements throughout, however.

Note: Again some further explanation is in order. Some reviewers of earlier edi-
tions complained that database design issues were treated too late. But it is my feel-
ing that students are not ready to design databases properly or to appreéiate design
issues fully until they have some understanding of what databases are and how they
are used; in other words, I believe it is important to spend some time on the relational
model and related matters before exposing the student to design questions. Thus, |
still believe Part II1 is in the right place. (That said, I do recognize that many instruc-
tors prefer to treat the entity/relationship material much earlier, To that end, I have
tried to make Chapter 14 more or less self-contained, so that thcy can bring it in
immediately after, say, Chapter 4.)

Part IV: The two chapters of this part, Chapters 15 and 16, are completely rewritten,
extended, and improved versions of Chapters 14 and 15 from the seventh edition. In

Preface to the Eighth Edition xxv

particular, Chapter 16 now includes a careful analysis of—and some unorthodox con-
clusions regarding-~the so-called ACID properties of transactions.

® Part V: Chapter 20 on type inheritance and Chapter 23 on temporal databases have
been totally rewritten to reflect recent research and developments in those areas,
Revisions to other chapters are mostly cosmetic, though thére are improvements in
explanations and examples throughout and new material here and there.

& Part VI: Chapters 25 and 26 are improved and expanded versions of Chapters 24 and
* 25 from the seventh edtnon Chapter 27 is new.

Finally, Appendix A is also new, while Appendixes B and C are revised versions of

_ Appendutes A and C, respectively, from the seventh edition (the material from Appendix
B in that edition has been incorporited into the body of the book). Appendix D is a signif-
icantly revised version of Appendi;g A _tftfom the sixth edition. :

WHAT MAKES THIS BOOK DIFFERENT"

Every database bock on the markct has its own mdwxdual strengths and weaknesses, and
every writer has his or her own particular ax to grind. One concentrates on transaction
management issues; another stresses enntylrclatxonshtp modeling; another looks at every-
thing through an SQL lens; yet another takes a pure “object” peint of view: still another
views the field exclusively in terms of some commercial product: and so on. And, of
course,] am no exception to this rule-—I too have an ax to grind: what rmght be called the
foundation ax. [believe very firmly that we must get the foundation right, and understand
it properly, before we try to build on that foundation, This belief on my part explains the
heavy emphasis in this book on the relational model; in particular, it explains the length of
Part I—the most important part of the book—where I present my own understanding of
' the relational model as carefully as I can, I am interested in foundauons. not fads and fash-
jons. Products change all the time, but prmc1ples endure,
In this regard, I would like to draw your attention to the fact that there are several
important (“foundation”™) topics for which this book, virtually alone among the compeu-
tion, includes an entire m-depth chapter (or an appcndtx. in one case) The topics in ques-

tion include;

Types

Integrity - SRR
Views : h
Missing information |
Inheritance -

Temporal databases

The TransRelational™ Model

xxvi Preface to the Eighth Edition

In connection with that same point (the importance of foundations), I have to admit
that the overall tone of the book has changed over the yezars. The first few editions were
mostly descriptive in nature; they described the field as it actually was in practice, “warts
and all.” Later editions, by contrast, were much more prescriptive; they talked about the
way the field ought to be and the way it ought to develop in the future, if we did things
right. And the present edition is certainly prescriptive in this sense (5o it is a text with an
attitude!). Since the first part of that “doing things right” is surely educating oneself as to
what those right things are, I hope-this new edition can help in that endeavor.

Yet another related point: As you might know, I recently published, along with my
colleague Hugh Darwen, another “prescriptive” book, Foundation for Future Darabase
Systems: The Third Manifesto (refererice [3.3] in the present book).2 That book, which we
call The Third Manifesto or just the Manifesto for short, builds on the relational model to
offer 'a detailed- technical proposal for future database systems; it is the result of many
years of teaching and thinking about such matters on the part of both Hugh and myself.
And. not surprisingly, the ideas of the Manifesto permeate the preseat book. Which is not
to say the Manifesto is a prerequisite to the present book—it is not; but it is directly rele-
vant to much that is in the present book and further related information is often to be
found therein. .

Note: Reference [3.3] uses a languagc called Tutorial D for lllustrauve purposes. and
the present book does the same. Tutorial D syntax and semantics are intended to be more

~ or less self-explanatory (the language might be characterized, loosely, as “Pascal-like™),
but individual features are explained when they are first used if such explanation seems
necessary. ,

A CLOSING REMARK "~

I would like to close these prefatory notes with the following lightly edited extract from
another preface—Bertrand Rnssell’s own preface to The Bertrand Russell Dictionary of
Mind, Marter and Morals (ed., Lester E. Denonn), Citadel Press, 1993, repriated here by
permission: .

I have been accused of a habit of changing my opinions . . . [am not myself in any degree
ashamed of [that habit]. What physicist who was already active in 1900 would dream of
boasting that his opinions had not changed during the last half century? . . . [The] kind of
philosophy that I value and huve endeavoured to pursue is scientific, in the sense that
there is some definite knowledge to be obtained and that new discoveries can make the
admission of former error inevitable to any candid mind. For what [have said, whether
early or late, I do not claim the kind of truth which theologians claim for their creeds. [
claim only, at besy, that the opinion expressed was a sensibie one to hold at the time . . . [
should be much surprised if subsequent research did not show that it needed to be modi-
fied. [Such opinions were not] intended as pontifical pronouncements, but only as the best
[could do at the time towards the promotion of clear and accurate thinking. Clarity.
above all, has been my aim.

2 There is 2 website, to0: http:/Avww.thethirdmanifesto.com. See also htp:/fwww.dbdebunk.com for much
refated material.

- .
—
L e s S w——— .. - . - -
. St g veemes e T

RS

Preface to the Eighth Edition xxvii

If you compare earlier editions of this book with this eighth edition, you will find that
I too have changed my opinions on many matters (and no doubt will continue to do so). I
hope you will accept the remarks just quoted as adequate justification for this state of
affairs,] share Bertrand Russell’s perception of what the field of scientific inguiry is all
about, but he expresses that perception far more eloquently than I could.

ACKNOWLEDGMENTS

Once again it is a pleasure to acknowledge my debt to the many péOple involved, directly
or indirectly, in the production of this book:

® First of all, I must thank my friends David McGoveran and Nick Tindall for their
major involvement in this edition; David contributed the first draft of Chapter 22 on
decision support, and Nick-contributed the first draft of Chapter 27 on XML. I must
also thank my friend and ‘colleague Hugh Darwen for major help (in a variety of
forms) with all SQL partions of the manuscript. Nagraj Alur and Fabian Pascal also
provided me with a variety of, technical background material. A special vote of thanks
goes to Steve Tarin for inventing the technology described in Appendix A and for his
help in getting me to understand it fully,

» Second, the text has benefited from the comments of students on the seminars I have
been. teaching over the past several years. It has also benefited enormously from the
comnieats of, and discussions with, numerous friends and reviewers, including Hugh
Darwen, IBM; Guy de Tré, Ghent University; Carl Eckberg, San Diego State Univer-
sity; Cheng Hsu, Rensselaer Polytechnic Institute; Abdul-Rahman Itani. The Univer-
sity of Michigan-Dearborn; Vijay Kanabar, Boston University; Bruce O. Larsen,
Stevens Institute of Technology; David Livingstone, University of Northumbria at
Newcastle; David McGoveran, Alternative Technologies; Steve Miller, IBM; Fabian
Pascal, independent consultant; Martin K. Solomon. Florida Atlantic University; Steve
Tarin, Required Technologies; and Nick Tindall, IBM. Each of these people reviewed
at least some part of the manuscript or made technical material available or otherwise
helped me find answers to my many technical questions, and I am very grateful to all
of them. i

n I would also like to thank my wife Lindy for contributing the cover art once again and
' for her support throughout this and all my other database-related projects over the
years.

n Finally, I am grateful (as always) to everyone at Addison-Wesley—especially Maite
Snarez-Rivas and Katherine Harutunian—for all of their encouragement and support
throughout this project, and to my packager Elisabeth Beller for another sterling job.

Hesldsburg, California ' C.1. Date
2003 |

R)

PRELIMINARIES

e

"\/“'k)

Part I consists of four introductory:chapiers:

Chapter 1 sets the scene by exﬁlmi{ing what a database is and why database systems
are desirable. It also bneﬁy dlscusscs the dxfference bctween relational systems and
others. . i

- Next, Chapter 2 presents a general archnccmre for database systems, the so-called

- ANSI/SPARC architecture. That archxtccture serves as a framcwork on whxch the rest

of the book will build. -

Chapter 3 then presents an overview of relational 'systems (the_éim' is to serve as a
geatle introduction to the much more comprehensive discussions of the same subject
in Part I and later parts of the book). It also introduces and ABXpla.ms the running
example, the suppliers-and-parts database.

Finally, Chapter 4 introduces the standard relanonal language SQL ‘(more precxscly.
SQL:1999). g

s -

] Ii‘-,:f .

—
———

W

"

e
- s et s o0

iy

s SRS A S A

P

Tdos =1 g

i ; T NI
TS PR & S T e AR S T

of Database Management

11
1.2
13
14
15
1.6
1.7

- Introduction
What Is a Database System?
What Is a Database?

Why Database?

‘Data Independence ~ * -
Relational Systems and Others
Summary .
Exercises
References and Bibliography

1.1 INTRODUCTION

A database system is basically just a computerized record-keeping system. The database
itself can be regarded as 2 kind of electronic filing cabinet; that is, it is a repository or con-
tainer for a collection of computerized data files. Users of the system can perform (or
request the system to perform, rather) a variety of operations involving such files——for

exampie:

Adding new files to the database

Inserting data into existing files

Retrieving data from existing files

Deleting data from existing files

Changing data in existing files

Removing existing files from the database '

o

T

e R

4

. gt
-5 P A

EL ,
rdls s, aw L
— i

Part I | Preliminaries

Fig. 1.1 shows a very small database containing Just one file, called CELLAR. which

in turn contains data concerning the contents of a wine cellar. Fig. 1.2 shows an example
of a retrieval request against that database, together with the data returned by that
request. (Throughout this book we show database requests, file names, and other such
material in uppercase for clarity. In practice it is often more .convenient to enter such
material in lowercase. Most systems will accept both.) Fig. 1.3 gives examples, all more
or less self-explanatory, of insert, delete; and change requests on the wine cellar data-
base. Examples of adding and removing entire files are given in later chapters.

1.

Several points arise immediately from Figs. 1.1~1.3:

First of all, the SELECT, INSERT, DELETE, and UPDATE requests (also called
statements, commands, or operators) in' Figs. 1.2 and 1.3 are all expressed in a lan-
guage called SQL. Originally 2 proprietary language from IBM, SQL is now an inter-
national standard that is supported by just about every database product commercially
available; in fact, the market is totally dominated by SQL products at the time of writ-
ing. Because of its commercial importance, therefore, Chapter 4 presents a general
overview of the SQL standard, and most subsequent chapters include a section called
“SQL Facilities” that describes those aspects of that standard that are pertinent to the
topic of the chapter in question.

By the way, the name SQL originally stood for Structured Quzry Language and

'was pronounced sequel. Now that it is a standard, however, the pame is officially justa

name—it is not supposed to be an abbreviation for anything at all—and it is officially
pronounced ess-cue-ell, We will assume this fatter pronunciation throughout ‘this
book.

Note from Fig. 1.3 that SQL uses the keyword UPDATE to mean “change” specifically.
This fact can cause confusion, because the termn update is also used to refer to the three
operators INSERT, DELETE, and UPDATE considered as a group. We will distinguish
between the two meanings in this book by using lowercase when the generic meaning is
intended and uppercase to refer to the UPDATE operator specifically.

Incidentally, you might have noticed that we have now used both the term opera-
tor and the term operation. Strictly speaking, there is a difference between the two
(the operation is what is performed when the operator is invoked); in informal discus-
sions, however, the terms tend to be used interchangeably.

In SQL, computerized files such as CELLAR in Fig. 1.1 are called tables (for obvi-
ous reasons); the rows of such a table can be thought of as the reconds of the file, and
the columns can be thought of as the fields. In this book, we will use the terminology
of files, records, and ficlds when we are talking about database systems in general
{mostly just in the first two chapters); we will use the terminology of tables, rows,
and columns when we are talking about SQL systems in particular. (And when we get
to our more formal discussions in Chapter 3 and later parts of the book, we will meet
yet another set of terms: relarions, tuples, and antributes instead of tables, rows, and
columns.)

imip———— it o

BT

Chapter 1 | An Overview of Database Management

5

BIN# | WINE PRODUCER YEAR | BOTTLES | READY
2 | chardonnay Buena Vista 2001 1| 2003
3 | Chardonnay Gaysexr Peak 2001 S| 2003
1] ChardonnA{ Simi - 2000 4 2002
12 | Joh. Riesling Jekel - 2002 i 2003
21 | Fumé Blanc Ch. St. Jean 2001 , 4 20013
22 | Fumé Blanc Robt, Mondavi | 2000 2 2002
30 | Gewlirztraminer | Ch. St. Jean 2002 3 2003
43 | cab. sauvignon | Windsor 1998 12 2004
45 { Cab. Sauvignon | Geyser Peak 1998 12 | 2008
48 | Cab. Sauvignon | Robt, Mondavi | 19%7 12 | 2008
50 | Pinot Noir "| Gary Farrell 2000 k| 20023
51 | pPinot Noir Fetzer 1997 3 [z004
52 | Pinot Moir Pahlinger 1899 2 2002
58 | Marlot Clos du Bois 1998 9 2004
54 | Zinfandel Cline 1998 g 2007
72 | Zinfandel "Rafanelli 1959 2 2007
Fig. 11 The wine cellar databiase (file CELLAR)
Retrieval: .
SELECT WINE, BINE#, PRODUCER...)
FROM CELLAR - i
WHERE READY = 2004 ;
Result (as shown on, e.g., a display screen):
WINE BINE | PRODUCER
Cab. Sauvignen 43 | Windsor -
Pinot Moir 51 | Petzer
Merlot 58 | Clos du Bois
Fig. 1.2 Retrieval example
Inserting dew datar . Tl
INSERT : : ‘
INTO CELLAR (BIN#, WINE, PRODUCER, YEAR, BOTTLES, READY }

VALUES (53, 'Pinot Noir', ‘Saintsbury‘, 2001,-6, 2005 } ;

Deleting existing data: .
DELETE - *
FROM CELLAR

WHERE BIN¢ = 2 ;

Changing existing daéa:
UPDATE CELLAR

SET BOTTLES = 4
WHERE BINt =] ;

Fig. 13 Insert, delete, and change examples

4. With respect to the CELLAR table, we have made a tacit assumption for simplicity
that columns WINE and PRODUCER contain character-string data and all other col-
umns contain integer data, In geaeral, however, columns can contain data of arbitrary

N, -

;i\ ::

6

Part I | Preliminaries

complcxity'."For example, we might extend the CELLAR table to include additional
columns as follows:

= LABEL (photograph of the wine bottle label}

x REVIEW (text of a review from some wine magazine)

n MAP (map showing where the wine comes from)

x NOTES (nudio recording containing our own tasting notes)

and many other things. For obvious reasons, the majority of examples in this book in-
volve only very simple kinds of data, but do not lose sight of the fact that more exotic

possibilities are always available. We will consider this question of column data types
in more detail in later chapters (especiatly Chapters 5-6 and 26-27).

5. Column BIN# constitutes the primary key for table CELLAR (meaning, loosely, that
no two CELLAR rows ever contain the same BIN# value). In figures like Fig. 1.1 we
use double underlining to indicate px;imary key columns.

One last point to close this preliminary section: While a full understanding of this
chapter and the next is necessary to a proper appreciation of the features and capabilities
of a modern database systen, it cannot be denied that the materinl is somewhat abstract
and rather dry in places (also. it does tend to involve a farge number of concepts and terms
that might be new to you). In Chapters 3 and 4 you will find material that is much less
abstract and hence more immediately understandable, perhaps. You might thierefore prefer
just to give these first two chapters a “once over lightly” reading for now, and to reread

-them more carefully later as they become more directly relevant to the topics at hand. -

12 WHAT IS A bAi‘ABASE SYSTEM?. ‘

To repeat from the previous section, a database system is basically a computerized record-
keeping System: in other words, it is a computerized system whose overall purpose is to
store information’ and to ailow users to retrieve and update that information on demand.
The information in question can be anything that is of significance to the individual or
orgnnization concerned—anything, in other words, that is needed to-assist in the general
process of running the business of that individual or organizntion.

Incidentally, pleasc note that we treat the terms data and information as synonyms in
this book. Some writers prefer to distinguish between the two, using data to refer to what
is actually stored in the database and information to refer to the meaning of that data as
understood by some user. The distinction is clearly important—so important that it seems
preferable to make it explicit, where appropriate, instead of relying on a somewhat arbi-
trary differentiation between two essentially synonymous terms.

Fig. 14isa sunphﬁed picture of a database system. As the figure shows, such a sys-
tem involves four major components: data, hardware, software, and users. We consider
these four components briefly here. Later we will discuss each in much more detail
(except for the hardware component, details of which are mostly beyond the scope of this

book).

T v e s

T e

Chapter 1 | An Overview of Database Management 7

B Database management system (DBMS) z;
1
]

Database . 3 Q

Application
programs

T e ey e e | End USErS

Fig. 1.4 Simplified picture of a2 database system

Data- -

Database systems are available on machines that range all the way from the smallest hand-
heid or personal computers to the largest mainframes or clusters of mainframes. Needless
to say, the facilities provided by any given system are determined to some extent by the
size and power of the underlying machine. In particular, systems on4arge machines (“large
systems™) tend to be mudti-user. whereas those on smaller machines (*small systems™)
tend to be single-user. A single-user system is a sysiem in which at most one user can
access the database at any given time: a multi-user system is a system in which many
users can access the database at the same time. As th 1.4 suggests, we will normally
assume the latter case in- this book, for gencrahty. in fact, however, the distinction is
largely irrelevant so far as most users are concerned, because it is precisely an objective of
multi-user systems in general to allow each user to behave as if he or she were working
with a single-user system instead. The special problems of multi-user systems are prima-
rily problems that are internal to the system, not ones that are visible to the user (see Part
IV of this book, especially Chapter 16).

Now, it.is convenient to assume for the sake of simplicity that the totality of data i in’

the system |s all stored in a single database, and we will usually make that assumption in
this bodk, since it does not materially affect any of our other discussions. In practice,
however, there might be good reasons, even in a small system. why the data should be
split across several distinct databases, ‘We will touch on some of those reasons later, in
Chapter 2 and elsewhere.

Ty

- Partlf ‘I Prel

gre
dai

an
COl
en

-

< es

ke
- -
-

" —--$

-.-‘-.- .

SN 4

8

Part] | Preliminaries

In general, then, the data in the database—at least in a Jarge system—will be both inre-
grated and shared. As we will see in Section 1.4, these two aspects, data integration and
data sharing, represent a major advantage of database systems in the “large” environment,
and data integration, at least, can be significant in the “small" environment as well. Of
course, there are many additional advantages also, to be discussed later, even in the small
environment. But first let us explain what we mean by the terms integrated and shared:

s By integrated, we mean the database can be thought of as a unification of several
otherwise distinct files, with any redundancy among those files partly or wholly elim-
inated. For example, a given database might contain both an EMPLOYEE file, giving
employee names, addresses, depariments,. salaries, and so on, and an ENROLL-
MENT file, representing the enrollment of employees in training courses (refer to
Fig. 1.5). Now suppose that, in order to carry out the process of training course
administration, it is necessary to know the departmcnt for each enrolled student. Then
there is clearly no need to include that information redundantly in the ENROLL-
MENT file, because it can always be discovered by referring to the EMPLOYEE file
instead.

u By shared. we mean the database can be shared among different users, in the sense
that different users can have access to the same data, possibly even at the same time
(“concurrent access’”), Such sharing, concurrent or otherwise, is partly a consequence
of the fact that the database is integmted. In the example of Fig. 1.5, for instance. the
department information in the EMPLOYEE file would typically bc shared by users in
the Personnel Department and users in the Education Department. (A database that is
not shared in the foregoing sense is sometimes said to be “personal™ or “application-
specific.”)

Another consequence of the foregoing facts—that the database is integrated and
shared—is that any given user will typically be concerned only with some small portion
of the total database; moreover, different users' portions will overlap in various ways. In
other words, a given database will be perceived by different users in many different ways.
In fact, even when two users share the same portion of the database, their views of that

‘portion might differ considerably at a detailed level. This latter point is discussed more

fully in Section 1.5 and in later chapters (especially Chapter 10).
We will have more to say regarding the nature of the data component of the systcm in
Section 1.3. .

EMPLOYEE | NAME | mnazss'| DEPARTMENT | SALARY | .

ENROLLMENT | NAME [COURSE | eee

Fig.1.5 The EMPLOYEE and ENROLLMENT files

| e

Hardware
The hardware components of the system consist of:

® The secondary storage volumeé—-typiéally magnetic disks—that are used to hold the
stored data, together with the associated /O devices (disk drives, etc.), device con-
trollers, IO chznnels, and so forth

» The hardware processor(s) and associated main memory that are used to support the
execution of the database system software (see the next subsection)

This book does not concem itself very much with the hardware aspects of the system.
for the following reasons among others: First, those aspects form a major topic in their
own right; second, the problems encountered in this area are not peculiar to database sys-
tems; and third. those problems haye, been very thoroughly investigated and documented -
elsewhere. : L ' '

Software - ' R

| Between the phsrsical d-ata,base itself—that is, t.hcida'ta as ph)}sii:zilly storéd—a_nd the users

of the system is a layer of software, known variously as the database manager or data-

. base server or, most commonly, the database management system (DBMS). All

requests for access to the database ar¢ handled by the DBMS: the facilities sketched in
Section 1.1 for adding and removing files (or tables), retrieving data from and updating
data in such files or tables, and so on, are all facilities provided by the DBMS. One general
function provided by the DBMS is thus the shielding of database users from hardware-
level details (much as programming language systems shield application ‘programmers
from hardware-level details). In other words, the DBMS provides users with a perception
of the database that is elevated somewhat above the hardware level, and it supports user

. operations (such as the SQL operations discussed briefiy in Section {.1) that are expressed

in terms of that higher-level perception, We will discuss this function, and other functions
of the DBMS, in considerably more detail throughout the body of the book.
A couple of fucther points: “ . .

» The DBMS is easily the most important software component in the overall system,
but it is not the only one. Others include wtilities, application development tools,
design aids, report writers, and (most significant) the transaction manager or TP
monitor. See Chapters 2, 3, and especially 15 and 16 for further discussion of these
components. b :

» The term DBMS is also used to refer generically to some particular product from
some particular vendor—for example, IBM's DB2 Universal Database product. The
term DBMS instance is then sometimes used to refer to the particular copy of such a
product that happens to be running at some particular computer installation. As you
will surely appreciate, sometimes it is necessary to distinguish carefully between
these two concepts.

L Lt S

-

10

g

e

. e y——— e I . P
o e e T e el .

por)

= -

Part [| Preliminaries

That said, you should be aware that people often use the term darabase when they

really mean DBMS (in either of the foregoing senses). Here is a typical example: “Vendor

X's database outperformed vendor Y's database by a factor of two to one.” This usage is -

sloppy, and deprecated, but very, very common. (The problem is: If we call the DBMS the

database, what do we call the database? Caveat lector!)

Users

We consider three broad (and somcivtgat overlapping) classes of users:

First, there are application programmers. responsible for writing database applica-
tion programs in some programming language. such as COBOL, PL/I, C++, Java, or
some higher-level “founh-generatmn language (see Chapter 2). Such programs
access the database by issuing the appropriate request (typically an SQL statement) to
the DBMS. The programs themselves can be traditional batch applications, or they
can be online applications, whose purpose is to allow an end user—see the next para-
graph—to access the database interactively (e.g., from an online workstation or ter-
minal or a personal computer). Most moder applications are of the online variety.

Next, there aré end users, who access the database interactively as just described. A
given end user can access the database via one of the online applications mentioned
in the previous paragraph, or he or she can use an interface provided as an integral
part of the system. Such vender-provided interfaces are also supported by means of
online applications, of course, but those applications are built in, not user-written.

o }[osr systems include at least one such built-in application, called a query language

proccssor, by Wthh the user can issue database requests such as SELECT and

" INSERT to the DBMS interactively. SQL is a typical example of a database query

'languagc [As an aside, we remark that the term query language. common though it

is, is reallv 3 misnomer, inasmuch as the verb “to query” suggests retrieval only.
whereas query Ianguages ‘usually—not always—prov:de update and other operators
as weII)

Most systems also provxdc additional built-in interfaces in whlch cnd users do not
issue explicit database requests such as SELECT and INSERT at ail, but instead oper-
ate by (e.g.) choosing items from a menu or filling in boxes on a form. Such menn- or

forms-driven interfaces tend to be easier to use for people who do not have a formal

training in IT (IT = information technology; the abbreviation IS, short for information
systems, is also used with much the same meaning). By contrast, command-driven
interfaces—that is, query languages—do tend to require a certain amount of profes-
sional IT expertise., though perhaps not much (obviously not as much as is needed to
write an application program in a Janguage like COBOL). Then 2gain, a command-
driven interface is likely to be more fiexible than a menu- or forms.dtiven one, in that
query languages typically lnclude certain featurés that are not supported by those

other mterfaces

The third class of user, not illustrated in Fig. 1.4, is the database administrator or
DBA. Discussion of the database administration function—and the associated (very

o, B e b o f e
IR R 1

P P . vamp e -
AT e

A ey

13 WHATIS ADATABASE?

Chapter 1 | An Qverview of Database Management 11

important) data administration funct:on——as deferred to Section 1.4 and Chapter 2
(Section 2.7).

This completes our preliminary description of the major aspects of a database systern..

We now go on to discuss the ideas in more detail.

Persistent Data

It is customary to refer to the data in a database as “persistent” (though it might not actu-
ally persist for very long!). By persistent, we mean, intuitively, that database data differs
in kind from other more ephgmieral data, such as input data, output data, work queues,
software control blocks, SQL-statements, intermediate resuits, and more generally: any
data that is transient in nature. More precisely, we say that data in the database “persists”
because, once it has been accepted by the DBMS for entry into the database in the first
place, it can subsequently be removed from the database only by some explicit request to
the DBMS, not as a mere side effect of (¢.g.) some program completing execution. This
notion of persistence thus allows us to give a slightly more precise definition for the term
database:

» A database is a collection of persistent data that is used by the application systems of
some given enterprise.

The t'c_nﬁ enterprise here is simply & convenient genedc tenm for any reascnably self-
contained commercial, scientific, technical, or other organization. An enterprise might be a
single individual (with a small personal database), or a complete corporation or similar
large body (with a large shared database), or anything in between. Here are some examples:
R

1. A manufacturing company

2. Abank

3. Ahospital

4. A university '

5. A government department

Any enterprise must necessarily maintain a lot of data about its operation. That data is

the “persistent data” referred to in the definition, The enterprises just mentioned would

typically include the following (respectively) among their persistent data:
1. Product data |
2. Account data
3. Patient data
4. Studentdata
5. Planning data

e
ey
e

il a i e LR B R]

RS M

et ey ey

V3 A e

AT S R

g T e SN e n e e O e R 4

e e

O

12

L3-7H

Part [| Preliminaries

Note: The first six editions of this bock used the term operational data in place of .

persistent data. That earlier term reflected the original emphasis in database systems on
operational or production applications—that is, routine, highly repetitive applications
that were executed over and over again to support the day-to-day operation of the enter-
prise (for example, an application to support the deposit or withdrawal of cash in a bank-
ing system). The term online transaction processing (OLTP) has come to be used to
refer to this kind of environment. However, databases are now increasingly used for
other kinds of applications as well—that is, decision support applications—and the
term operational data is thus no longer entirely appropriate. Indeed, enterprises nowa-
days frequently maintain two separate databases, one chtaining operational data and
one, often called the data warehouse, containing decision support data. The data ware-
house often includes summary information (e.g., totals, averages), where the summary

information in question is extracted from the operational database on a perodic basis—

say once a day or once a week, See Chapter 22 for an in-depth treatment of decision sup-
port databases and applications. :
: ‘

Entities and Relationships

We now consider the example of a manufacturing company (“KnowWare Inc.”) in a litle
more detail. Such an enterprise will typically wish to record information about the projects
it has on hand: the parzs that are used in those projects; the suppliers who are under con-
tract to supply those parts; the warehouses in which those parts are stored; the employees
who work on those projects; and so on. Projects, parts, suppliers, and 50 on, thus constitute
the basic entities about which KnowWare Inc., needs to record information (the term enrizy
is commonly used in database circles to mean any dlsnngulshablc object that is to bc rep-
resented in the database). Refer to Fig. 1.6,

Suppliers @*— Projects

SP <SP> P # <ﬂ>

<S> IWarehouses Parts) Employees |

ﬁ\b | ﬁ@
WE
Locations @——— Departments

Fig.1.6 Entity/relationship (E/R) diagram for KnowWare Inc.

-

b s BT} e) - S A Yol A it kgl = 1§ e B 4 gr et er

Chapter 1 | An Overview of Database Management 13

In addition to the basic entitics themselves (suppliers, parts, and so on, in the exam-
ple), there will also be relationships linking those basic entities together. Such relation-
ships are represented by diamonds and connecting lines in Fig. 1.6. For example, thereis a
relationship (“SP” or shipments) between suppliers and parts: Each supplier supplies cer-
tain parts, and conversely each part is supplied by certain suppliers (more accurately, each
supplier supplies certain kinds of parts, each kind of part is supplied by certain suppliers).
Similarly, parts are used in projects, and conversely projects use parts (relationship PI);
parts are stored in warchouses, and warehouses store parts (relauonshxp WP); and so on.
Note that these relationships are all bidirectional—that is, they can be traversed in either
direction. For example, telationship SP between supphers and parts can be used 10 answer
both of the following quencs‘

= Gwen a supplier, get the parts supplned by that supphcr.
® Given a part, get the suppﬁers who supply that part.

The significant point about this relatlonship (and all of the others illustrated in the fig-
ure) is that they are just as much a part of the data as are the basic entities. They must
therefore be rcpn:sented in the database; just Iike the basic entitics. !

We note in passing that Fig, 1.6 is an example of what is called (for obvious reasons)
an entity/relationship diagram (E/R dmgram for shon) ‘We w;ll conslder such diagrams
in detail in Chapter 14, —

Fig. 1.6 also illustratcs a number of ather 1mportnnt pomts :. -,

.J

1. Although most of the relatxonshxps in that ﬁgurc involve (wo cnuty types—that is,
they are binary relationships-—it is by no means’ the case that all relationships are
binary in this sense. In the example there is one relationship (“SPJ™) involving three
entity types (supphers. parts, and projects); a rernary relnnonshlp :The intended inter-
pretation is that certain suppliers supply certain parts to certain projects. Note care-
fully that this ternary relationship (“suppliers supply parts to prpjects "} is not equiva-
lent, in general, to the combination of the three binary relationships “suppliers supply
parts,” “parts are used in projects,” and pmjects are supphed by suppliers.” For
example, the statement? that

a, Snuth supplies monkey wrenches to, the Manhattan pro_;ect o

[}

tells us more than the following three statements do: -

b. Smith supplies monkcy wrenches
c. Monkey wrenches are used in the Manhattan p!‘OJCCI
d. The Manhattan project is supphed by Smith

! In a relational database specifically (see Section 1.6); the basic entities and the relationships connecting
them ore both represented by means of relations, or in other words by ables like the one shown in Fig.
L1, loosely speaking. Note carefully, therefore, that the term relationship ns used in the present section
and the term relation as used in the context of relational databases do not mean the same thing,

2 The term starement is unfortunately used in the database world 16 mean rwo rather different things: It
can be used, as here, to mean an asgertion of fact, or what logicians call a proposirion (sec the subsection
“Data and Data Models™ later in this section); it can also be used, as we alxeady know from earlier discus-
sions, as a synonym for command, as in the expresgion “SQL statement.”

[Ll L L

.| -.."5~-om-_-;a;.-,r.......24a‘¢r,..aa.eﬁw-—l .
' . [I Tk

14

1 - S ’
i, i . o 7
. O 1 ekt et e e o b s § (L

Part] | Preliminaries

—we cannot (validly!) infer a knowing only &, ¢, and d. More precisely, if we know b,
¢, and d, then we might be able to infer that Smith supplies monkey wrenches to some
project (say project Jz), thet some supplier (say supplier Sx) supplies monkey
wrenches to the Manhattan project, and that Smith supplies some part (say part Py) to
the Manhattan project—but we cannot validly infer that Sx is Smith or Py is monkey
wrenches or Jz is the Manhartan project. False inferences such as these are examples
of what is sometimes called the connection trap.

2. The figure also shows one relationship (PP) involving just one entity type (parts). The
relationship here is that certain parts include other parts as immediate components
(the so-cailed bill-of-materials relationship); for exarmple, a screw is a component of
a hinge assembly, which is also a part and might in tum be a component of some
higher-level part such as a lid. Note that this relationship is still binary; it is just that
the two entity types involved, parts and parts, happen to be one and the same.

3. In general, a given set of entity types might be involved in any number of distinct
relationships. In the example in Fig. 1.6, there are two distinct relationships involving
projects and employees: One (EJ) represents the fact that employees ‘are assigned to
projects: the other (MJ) represents the fact that employees manage projects.

We now observe that a relationship can be regarded as an entity in its own right. lf we

take as our definition of entity “any object about which we wish to record information,”
then a relationship certainly fits the definition. For instance, “part P4 is stored in warehouse
W8 is an entity about which we might well wish to record information—for example, the
corresponding quantity. Moreover, there are definite advantages (beyond the scope of the

- present chapter) to be obtained by not makmg any unnecessary distinctions between enti-

ties and relationships. In this book, thercforc. we w:ll tend to treat relatmnshxps as just a

N spectal }Jnd of entlty

Properties :
As just indicated, an entity is any object about which we wish to record information. It fol-
lows that entities (relationships included) can be regarded as having properties, corre-
sponding to the information we wish to record about them. For example, suppliers have
locations: parts have weights; projects have priorities; assignments (of employees to
projects) have start dates; and so on. Such properties must therefore be :eprescntcd in the
database. For example, an SQL database might include a table called S representing sup-
pliers, and that table might include a column called CITY representing supplicr locations.
Propertics in general can be as simple or as complex as we please. For example, the
“supplier location™ property is presumably quite simple, consisting as it does of just a city
name, and can be represented in the database by a simple character string. By contrast, a
warehouse might have a “floor plan” property, and that property might be quite complex,

' conmstmg perhaps of an entire architectural drawing and associated descriptive text. As

noted in Section 1.1, in other words, the kinds of data we might want to keep in (for
example) columns of SQL tables can be arbitrarily complex. As also noted in that same
section. we will return to this topic later (principally in Chapters 5-6 and 26~27); until

LTI TR S

A et W 1T AR s i S ks)

Chapter 1 | An Overview of Database Management 15 +

then, we will mostly assume, where it makes any difference, that properties are “simple”
and can be represented by “simple” data types. Examples of such “simple” types Jnclude
numbers, character strings, dates, times, and so forth.

.
S EDT R

)
B L A e
R 33 o A T Sy ey) 6~ WIS YR w e T Ay
0 3 M e P T R TE KA S AP

Data and Data Models

There is another (and important) way of thinking about what data and databases really are.
The word data derives from the Latin for “to give”; thus, data is really given facts, from
which additional facts can be inferred. (Inferring additional facts from given facts is
exactly what the DBMS does when it responds to a user query.) A “given fact” in wrn cor-
responds to what logicians call a trie proposirion; for example, the statement “Supplier Sl
is located in London™ might be such a true proposition. (A propesition in logic is some-
thing that is either true or false. unequivocally. For instance, “William Shakespeare wrots
Pride and Prejudice” is a propgsition-—a false one, as it happens.) It follows that 2 data-
base is really a collection of true propositions.

Now, we have already said that SQL products have come to dominate the marketplace.
One reason for this state of affairs is that SQL products are based on a formal theory called
the relational model of data, and that theory in tum supports the foregoing interpretation
of data and databases very directly-—almost tnvrally. in fact, To be specific, in the relational
model: :

bz, Tr S g

1. Data is represented by means of rows in tables,? and such rows can be directly inter-
preted as true propositions. For example. the row for BIN# 72 in Fig. 1.1 can be inter- .
preted in an obvious way as the following true proposition:

Bin munber 72 contains two botles of 1999 Rafanelli meandel which will be ready
to drink in 2007 '

2. Operators are provided for operating on rows in tables, and those operators directly %
support the process of inferring additional true propositions from the given ones. Asa 4§
simple example, the relational projecr operator (see Section 1:6) allows us to infer.
from the true proposition just quoted. the followmg additional true proposition
among others:

Some bottles of Zinfandel will be ready to drink in 2007

(More precisely: “Some bottles of Zinfandel in some bin. produced by some producer
in some year, will be ready to drink in 2007.")

o

The relational model is not the only data model, however; others do exist (see Section 3
1.6)—though most of them differ from the relational model in being ad hoc to a degree,
instead of being firmly based as the relational model is on formal logic. Be that as it may,
the question arises: What in general is a data model? Following reference [1 1] (but para-
phraSmg consxdembly). we can define the concept thus:

n A data model is an abstract, self-contained, logical definition of the objects, opera-
tors, and so forth, that together constitute the abstract machine with which users

3 More precisely. by ruples in relasions (ses Chapter 3).

A My

e
‘-—-'q...“-v

i - -
-.-! Nqih‘q.n.:“_..__.f_‘_ it _uqr,

16 Part1 | Preliminaries

L -

interact, The objects allow us to model the structure of data. The operators allow wuc
to model its behavior :

o4
We can then draw a useful {(and very important!) distinction between the model and its
implementation:

©en 4 Y e iy |

% Animplementation of a given data model is a physical realization on a real machine
of the components of the abstract machine that together constitute that model.

s neadomaney gt

In a nutshell: The model is what users have to know about; the implementation is what
users do not have to know about.

As you can sce from the foregoing, the distinction between model and implementa-
tion is really just a special case—a very important special case—of the familiar distinction
between logical and physical. Sadly, however, many of today’s database systems, even
ones that profess to be relational. do not make these distinctions as clearly as they should.
Indeed, there seems to be a fairly widespread lack of understanding of these distinctions
and the importance of making them. As a consequence, there is all too often a gap -
between database principles (the way database systems ought to be)-and database practice
{the way they actually are). In this book we are concemed primarily with principles, but it
is only fair to warn you that you might therefore be in for a few surprises, mostly of an
unpleasant nature, if and when you start using a commercial product.

In closing this section, we should mention the fact that dara mode! is another term that
is used in the literature with two quite different meanings. The first meaning is as already
explained. The second is as follows: A data model (second sense} is a model of the persis-
tent data of some particular enterprise (e.g., the manufacturing company KnowWare Inc.
discussed earlier in this section). The difference between the two meanings can be charac-
terized thus:

corehd bty £a 1

¥ A data model in the first sense is like 2 programming language—albeit one that is
somewhat abstract—whose constructs can be used to solve a wide variety of specific
problems, but in and of themselves have no direct connection with any such specific
problem.

® A data model in the second sense is like a specific program written in that language.
In other words, a data model in the second sense takes the facilities provided by some
model in the first sense and applies them to some specific problem. It can be regarded
as a specific application of some model in the first sense.

In this book, the term data model will be used only in the first sense from this point
forward, barring explicit statements to the contrary.

14 WHY DATABASE?

Why use a database system? What are the advantages? To some extent the answer to these
questions depends on whether the system in question is single- or multi-user (or rather, to
be more accurate, there are numerous additional advantages in the multi-user case). We
consider the single-user case first, '

I

Chapter 1 | An QOverview of Database Management 17

Refer back to the wine cellar example once again (Fig. 1.1), which we can regard as
illustrative of the single-user case. Now, that particular database is so small and so simple
. that the advantages might not be all that obvious. But imagine a similar database for a large
restaurant, with a stock of perhaps thousands of bottles and very frequent changes to that
stock; or think of a liquor store, with again a very large stock and high turnover on that
stock. The -advantages of a database system over traditional, paper-based methods of
record-keeping are perhaps easier to see in these cases. Here are some of them:

= Compacmaﬁ There is no need for possibly voluminous paper files.
® Speed: The machine can retrieve and update data far faster than a human can. In par-
ticular, ad hoc, spur-of-the-moment queries (e.g., “Do we have more Zinfandel than
Pinot Noir?") can be answered quickly without any need for t:me-consurmng manual
or visual searches. g
W Less drudgery: Much of the sheer tedium of maintaim’ng files by hand is efiminated.
Mechanical tasks are always better done by machines.

u Currency: Accurate, up-to-date infofmation is available on Her_nand at any time.
. @ Protection: The data can be better protected against unintentional loss and unlawful
access. o '

The foregoing benefits apply with .even more force in-a multi-user environment,
where the database s likely to be much larger and more complex than in the single-user
case. However, there is orie overriding additional advantage in such an environment: The
database system provides the enterprise with centralized control of its ddta (which, as you
should realize by now, is one of its most valuable assets)..Such a situation contrasts
sharply with that found in an enterprise without a database system, where typically each
application has its own private files~—quite often its own private tapes and disks, too—so
that the data is widely djspcrsed and difficult to control in any systematic way.

Data Administration and Database Administration - '+ v

~ We elaborate briefly on this concept: of centralized control 'I'he concept implies that there
will be some identifiable person in the enterprise who has this central responsibility for the
data, and that person is the data administrator. (DA for short) mentioned briefly at the
end of Section 1.2, Given that, to repeat, the data is one of the enterprise’s most valuable
assets, it is imperative that there should be some person who understands that data, and the
. needs of the enterprise with respect to that data, at a senior management level. The data
administrator is that person. Thus, it is the data administrator’s job to decide what data
should be stored in the database in the first place, and to establish policies for maintaining
and dealing with that data once it has been stored. An example of such a policy might be
 one that dictates who can perform what operations on what data in what circumstances—
_ in other words, a data security policy (see the next subsection).
Note carefully that the data administrator is 2 manager, not a technician (although he
- - or she certainly does need to have some broad appreciation of the capabilities of database
systems at a technical level). The technical person responsible for implementing the data

T N

[y
.
e
i
i
.
'l
e
H
)
i
|
"
H
!
]
1

S YRt = e 4 g

————— i, s e Ml e s pa——. — -

g Tt —-.u.--~

--.....t.a'u:....t_'l.._.... L1 T ..-._.z’

18

Part [| Preliminaries

administrator's decisions is the database administrator (DBA for short). The DBA,
unlike the data administrator, is thus an informatjon technology (IT) professional. The job
of the DBA is to create the actual database and to put in place the technical controls
needed to enforce the various policy decisions made by the data administrator. The DBA
is also responsible for ensuring that the system operates with adequate performance and
for providing a variety of other technical services. The DBA will typically have a staff of
system programmers and other technical assistants (i.e., the DBA function will typically
be performed in practice by a team of people, not just by one person); for simplicity, how-
ever, it is convenient to assume that the DBA is indeed a single individual. We will discuss
the DBA function in more detail in C_hapter 2.

Benefits of the Database Approach

In this subsection we identify some more specxﬁc advantages that accrue from the fore-
going notion of centralized control.

® The data can be ._sjhai;ed.

We discussed this point in Section 1.2, but for completeness we mention it again here.

Sharing méans not only that existing applications can share the data in the database.

but also that new applications can be developed to operate against that same data. In

other words, it might be possible to satisfy the data requirements of new applications
. wnthout hnvmg 1o add | any new data to the database.

. Reduudanc_v can be rediced.

- In-nondatabase systems each application has its own private files. This fact can often
lead to considerable rednndancy in stored data, with resultant waste in storage space.

- For example, a personne! application and an education records application might both
own a file that includes department information for employees. As suggested in Sec-
tion 1.2, however, those two files can be integrated, and the redundancy eliminated, as
long as the data administrator is aware of the data requirements for both applica-
tions—that i is. as ‘long as the enterprise has the necessary overall control.

Note: We do not mean to say that all redundancy can or necessarily should be
eliminated. Sometimes there are sound business or technical réasons for maintaining
several distinct copies of the same data. However, we do mean that any such redun-
dancy should be carefully controlled; that is, the DBMS should be aware of it, if it
exists, and should assume responsibility for “propagating updates™ (see the point im-
mediately following). . :

® [nconsistency can be avoided (to some extent),

This is really a corollary of the previous point. Suppose a given fact about the real
world-—~say the fact that employee E3 works in department D8—is represented by two
distinct entries in the database. Suppose also that the DBMS is not aware of this dupli-
cation (i.e., the redundancy is not controlled), Then there will necessarily be occasions
on which the two entries will not agree: namely, when one of the two has been updated
and the other not. At such times the database is said to be inconsistent. Clearly, a data-

e

|
|

Chapter 1 | An Overview of Database Management 19

base that is in an inconsistent state is capable-of supplying incorrect or contradictory
information to its users.

Of course, if the given fact is represented by a single entry (i.e., if the redundancy
" is removed), then such an inconsistency cannot occur. Alternatively, if the redundancy
is not removed but is controlled (by making it known to the DBMS), then the DBMS
can guarantee that the database is never inconsistent as seen by the user, by ensuring
that any change made to either of the two entries is automatically applied to the other
one as well. This process is known as propagating updates, .

Transaction support can be provided.

A transaction is a logical unit of work (more precisely, a logical unit of database
work), typically involving several database operations—in particular, several update
operations. The standard ‘example involves the transfer of a cash amount from one
account A to another account 8. Cleacly two updates are required here, one to with-
draw the cash from account’d and the other to deposit it to account B. If the user has
made the two updates part of the same transaction, then the system can effectively
guarantee that either both of them are done or neither is—even if, for example, the
system fails (say because of a’power outage) halfway through the process. -

Note: The transaction atomicity feature just illustrated is not the only benefit of
transaction support, but unlike some of the others it is one that applies. at least in prin-
ciple, even in the singlé-user case. (On the other hand. single-user systems often do
not provide any transaction support at all but simply leave the problem to the user.) A
full description of all of the various advantages of transaction support and how they
can be achieved appears in Chapters 15 and 16.

Integrity can be maintained.

The problem of integrity is the problem of ensuring (as far as possible) that the data in
the database is correct. Inconsistency between two entries that purport to represent the
- same fact is an example of lack of integrity (see the discussion of this point earlier in
this subsection); of course. this pamcular problem can arise only if redundancy exists
in the stored data. Even if there is no redundancy, however. the database might still
contain incorrect information. For example, an employee might be shown as having
worked 400 hours in the week instead of 40, or as belonging t0 a department that does
- not eXist. Centralized control of the database can help. in avoiding such problems—
- insofar as they can be avoided—by permitting the data administrator to define), and the
DBA to implement, integrltv constraints to be checked when update operations are
performed. /

It is worth pointing out that data integrity is even more important in a database
system than it is in a “private files” environment, precisely because the data is shared.
For without appropriate controls it would be possible for one user to update the data-
" base incorrectly, thereby generating bad data and so “infecting” other innocent users
‘of ‘that data. It should also be mentioned that most database products are still quite
weak in their support for integrity constraints (though there have been some recent
improvements in this area). This fact is unfortunate, given that (as we will see in Chap-
ter 9) integrity constraints are both fundamental and crucially important—much more
so than is usually realized, in fact.”

L)

20 Part] | Preliminaries

& Security can be enforced.

Having complete jurisdiction over the database, the DBA (under appropriate direction
from the data administrator) can ensure that the only means of access to the database
is through the proper channels, and hence can define security constraints to be
checked whenever access is attempted to sensitive data. Different constraints can be
established for each type of access (retrieve, insert, delete, etc.) to each piece of infor-
mation in the database. Note, however, that without such constraints the security of the
data might actually be more at risk than in a traditionai (dispersed) filing system: that
is, the centralized nature of a database system in a sense requires that a good security
system be in place also.

Conflicting requiremenis can be baIanced

Knowing the overall requirements of the enterprise, as opposed to the requirements of
individual users, the DBA (again under the data administrator’s direction) can so
structure the system as to provide an overall service that is “best for the enterprise.”
For example. a physical representation can be chosen for the data in storage that gives
fast access for the most important applications (possibly at the cost of slower access
for certain other applications).

Standards can be enforced.

With central control of the database, the DBA (under the dxrccnon of the data admin-
istrator once again) can ensure that all applicable standards are-observed in the repre-
sentation of the data, including any or all- of the following: depdrtmental, installation,
corporate, industry, national, and international standards. Standardizing data represen-
tation is particularly desirable as an aid to data interchange, -or movement of data
between systems (this consideration is becoming particularly important with the
advent of distributed systems—see Chapters 2, 21, and 27). Likewise, data naming
and documentation standards are also very desirable as an aid to data sharing and un-
derstandability.

Now, most of the advantages listed so far are probably fairly obvious. However, one

further point-—which might not be as obvious, although it is in fact implied by several of
the others-—needs to be added to the list: the provision of data independence. (Strictly
speaking, this is an objective for database systems, rather than an advantage as such.) The
concept of data independence is so important that we devote a separate section to it.

15 DATA INDEPENDENCE

We begin by observing that there are two kinds of data independence, physical and logical

{1.3, 1.4]; for the time being, however, we will concern ourselves with the physical kind
only. Until further notice, therefore, the unqualified term data independence should be
understood to mean physical data independence specifically. (We should perhaps add that
the term data independence is not very apt—it does not capture very well the essence of
what is really going on—but it is the term traditionally used, and we will stay with it in
this book.)

B it oy vekett 4l oy

ittt oy e O S e

o

Chapter 1 | An Overview of Database Management 21

Data independence can most easily be understood by first considering its opposite.
Applications implemented on older systems—prcrelational or even predatabase systems
—tend to be data-dependent. What this means is that the way the data is physicaily repre-
sented in secondary storage, and the tcchmqucs used to access it, are both dictated by the
requirements of the application under consideration, and moreover that knowledge of that
physical represenzation and those access techniques is built into the application code. For
example, suppose we have an application that uses the EMPLOYEE file of Fig. 1.5, and
suppose it is decided, for performance reasons, that the file is to be indexed on its

“employee name” field (see Appendix D, online). In an older system, the application in
question will typically be aware of the fact that the index exists, and aware also of the
sequence of records as defined by that index, and the internal structure of the application
will be built around that knowledge. In particular, the precise form of the various data
access and exception-checking routmes within the application will depend very heavily on
derails of the interface presentcdto the appli¢ation by the data management software.

We say that an application“such as the one in this example is data-dependent,
because it is impossible to change the physical representation (how the data is physically
represented in storage) and access. techmqucs (how it is physically accessed) without
affecting the application, probably drasncally For instafice, it would not be possible to
replace the index in the example by a hashing scheme without mnki'ng major modifica-
tions to the application code. What is more, the pomons of that code requiring alteration
in such a situation are precisely those portions that communicaie with the data manage-
ment software; the difficulties involved aré quite irrélevant to the problem the application

" was originally written to solve—that is, they are dxfﬁculnes mrmduced by the nature of
the data management interface. Pl

In a database system, however. it would be extremcly undcsnrable to allow applications
to be data—dependent in the forcgomg sense, for at least the following two reasons:

1. Different apphcauons will requu'e different views of the same data For example, sup-
pose that before the enterprise introduces its mtegrated database:there are two appli-
- cations, A and B, each owning a private file that includes the field “customer balance.”
Suppose. however. that application A stores that field ini decimal, whereas application
B stores it in binary. It will still be possible to integrate the two files, and to eliminate
the redundancy, provided the DBMS is ready and able to perform all necessary con-
versions between the stored representation chosen (which might be decimal or binary
or something else again) and the form in which each application wishes to see it. For
example, if it is decided to store the field in decimal, then every access by 8 will
require a conversion to or from binary.
This is a fairly trivial example of the kind of difference that might exist in a data-
base system between the data as seen by a given application and the data as physically
stored, We will consider many other possible differences later in this section.

2. The DBA—or possibly the.DBMS—must have the freedom to change the physical
. representation and access technique in response to changing requirements, without
.existing applications having to be modified. For example, new kinds of data might be
added to the database; new standards might be adopted; application priorities (and
therefore refative performance requirements) might change; new storage devices

kSRS

22

-

.- -

Aheredlgmle e T __}

‘_..-,‘ e e

Part [[Preliminaries

might become available; and so on. If applications are data-dependent, such changes
will typically require corresponding changes to program code, thus tying up program-
mer effort that would otherwise be available for the creation of new applications. It is
still not uncommon, even today, to find a significant fraction of the available pro-
gramming effort devoted to this kind of maintenance (think of all the work that went
into addressing the *“Year 2000” problem)—hardly the best use of a scarce and valu-
able resource. ,

It follows that the provision of data‘independence is 2 major objective for database

systems. Data independence can be defined as the immunity of applications to change
in physical representation and accéss technique—which implies that the applications in
question do not depend on any particular physical representation or access technique. In
Chapter 2, we describe an architecture for database systems that provides a basis for
- achieving this objective. Before then, however. let us consider in more detail some exam-
ples of the types of changes that the DBA might wish to make 'md that we might there-
fore wish'applications to be immune to.

Fig.

We start by defining three terms: stored field, stored record. and stored file (refer to
L.

A stored field is, loosely, the smallest unit of stored data. The database will contain
many occurrences (or instances) of each of several types of stored field. For exam-
ple, a database containing information about different kinds of parts might include a
stored field type called *part number,” and then there would be one occurrence of that
stored field for each kind of part (screw, hinge, lid, etc.).

‘Note: The foregoing paragraph notwithstanding, you should be aware that it is
common in practice to drop the qualifiers fype and occurrence and to rely on context
to indicate which is meant. Despite a small risk of confusion, the practice is conve-
nient, and we will adopt it ourselves from time to time in what follows, (Thcse
remarks apply to stored records as well—see the paragraph immediatety followmg)

A stored record is a collection of related stored fields. Again we distinguish between
type and occurrence. A stored record occurrence (or instance) consists of a group of
related stored field occurrences. For example, a stored record occurrence in the
“parts” database might consist of an occurrence of each of the following stored fields:
part number, part name, part color, and part weight. We say that the database contains
many occurrences of the “part” stored record type—again, one occurrence for each
kind of part. : -

Finally, a stored file is the collection of all currently existing occurrences of one type
of stored record. (We assume for simplicity that any given stored file contains just
one type of stored record. This simplification does not materially affect any of our
subsequent discussions.)

Now, in nondatabase systems it is normally the case that any given logical record as

seen by some application is identical to some corresponding stored record. As we have
already seen, however, this is not necessarily the case in a database system. because the
DBA might need to be able to make changes to the stored representation of data—that is,

P T PP T

et Sinb I Sl L bt it a e

ey
W .

Chapter 1 | An Overview of Database Management

<;orcd database\

ot

er stored files

“Parts” stored w

part “part part par
no. nar'ne oolor weight

r > P1 12.0
Two occurrences \ \ * f

of the.“part” Stored field occurrences

stored retolrd type ,; * \ \

P2 | Bolt |Green{17.0

part pat part pan
Fig. 1.7 Stored fields, records, and files Lo

v

V

no. hame color weight

to the stored fields, records, and filess—while the data as seen by applications does ot
change. For example, the SALARY field in the EMPLOYEE file might be stored in binary
to economize on storage space, whereas a given COBOL, application might see itasa
character string. And later the DBA might decide for some reason to change the stored

~representation of that field from binary to decimal, say, and yet still allow the COBOL

application to see it in character form.

As stated earlier, a differeace such as this one—involving data type conversion on
some field on each access—is comparatively minor. In general, however, the difference
between what the application sees and what is physically stored might be quite consider-

_able, To arnphfy this remark, we briefly consider some aspects of the stored representation

that might be subject to change. You should consider in each case what the DBMS would
have to do to make applications immune to such change (and indeed whether such immu-
nity can always be achieved).

- e

P ' .
L e h S U] "'—_
e S T ,
o b

24 Partl | Preliminaries

M Representation of numeric data

A numeric field might be stored in internal anthmctic form (e.g., packod decimal) ot
as a character string. Either way, the DBA must choose whether to use fixed or floating
point; what base or radix (e.g., binary or decimal) to use; what the precision (number
of digits) should be; and, if fixed point, what the scale factor (number of digits after
the radix point) should be. Any of these aspects might need to be changed to improve
performance or'to conform to a new standard or for many other reasons.

= Representation of character data

A character string field might be stored using any of several distinct coded character
sets—for example, ASCII, EBCDIC, or Umcode

8 Units for numeric data

The units in a numeric field might change—from mches to cenumeters. for exzunple
during a process of metrication.

n Data coding

In some situations it might be desirable to represent data in storage by coded valucs
For example, the “part color™ field, which an application sees as a character string
(“Red” or “Blue" or “Green"” . . .), might be stored as a single decimal digit, inter-
preted according to the coding scheme | = “Red,” 2= “Blue,” and so on.-.

8 Dara materiglization I ',

In practice the logical field seen by an application usually does !con'espond directly to
some specific stored field (aithough there might be differences in data type, coding,
and so on, as we have seen). If it does. then the process of materialization—that is,
constructing an occurrence of the logical field from the corresponding stored field
occurrence and presenting it to the application—is said to be direct. Sometimes, how-
ever. a logicaf field will have no single stored counterpart; instead, its values “will be
materialized by means of some computation, perhaps on several stored field occur-
rences. For example, values of the logical field “total quantity” might be materialized
by summing a number of individual stored quantities, In such a case, the materializa-
tion process is said to be indirect.

B Structure of stored records

Two existing stored records might be combined into one. For cxample the stored
records .

| part no. | part coler | and | part no. | part weight |

might be combined to form

Lpnx:t no. I part coler ' part vaightq

Such a change might occur as new applications are integrated into thé database sys-
tem. The implication is that a given application's logical record might consist of a

m—

Chapter 1 | An Overview of Database Management 25

proper subset of the corresponding stored record—that is, certain fields in that stored
.rccord would be invisible to the application in question.
- Alternatively, a single stored record type rmght be split into two Reversing the
previous example, the storcd record -

[part no. [part color l part weight

might be split into

I part no. l part coler I . and rpart no.] part weight J

Such a split would allow less frequently used portions of the original record to be
stored on a slower device, for.example. The implication is that a given application’s
logical record might contain®fields from several distinct stored records—that is, it
might be a proper superset of ¢ any. g:vcn one of those stored records

ure of stored files -

4’;{'311 stored file can be physncaﬂy 1mplemented in storage in a wide variety of ways
(see Appendix D, online). For example, it might be entirely contzuned within a singie
. storage volume (e.g., a single disk); or it might be spread across several volumes (pos-
sibly on several dlffcrent device typcs) it might or might not be physically sequenced
according to the values of some stored field; it might or mlght not be sequenced in one
or more additional ways by some other means (e.g. by one or more indexes or one of
more embedded pointer chains or both); it might or might not be accessible via some
hashing scheme; the stored records might or might not be. physxcally grouped into
. blocks; and so on. But none of these considerations should aﬂ'ect apphcauons in any

way (other than performance. of course). :

This concludes our -partial list of aspects of the stored data representatlon that are sub-
ject to possible change. Note that the list lmphes in particular that the database should be
able to grow without impairing existing applications;. indeed, enabling the database to
grow without logically impairing existing applications is one of the most important rea-
sons for requiring data independence in the first place. For example, it should be possible
to extend an existing stored record by the addition of new stored fields, representing, typi-
cally, further information concerning some existing type of entity (e.g., 2 “unit cost” field
~ might be added to the “part” stored record), Such new fields should simply be invisible to
existing applications, Likewise, it should be possible to add entirely new stored record
 types and new stored files, again without requiring any change to existing applications;
such new records and files would typically represent new entity types (e.g., a “supplier”
record type might be added to the “parts" database), Agam. such additions should be
invisible to existing applications.

As you might have realized by now, data independence is one of the reasons why sep-

 arating the data model from its implementation, as discussed near the end of Section 1.3,

‘is so important: To the extent we do not make that separation, we will not achieve data
independence. The widespread failure to make the separation properly, in today’s SQL
systems in particular, is thus panticularly distressing. Note: We do not mean to suggest by

LIRS

R "- -

«an

L.
-J..J.-.:IL.—."' —— _.,‘_____ - ~ f

26

Part [| Preliminaries

these remarks that today’s SQL systems provide no data independence at all-—only that
they provide much less than relational systems, are theoretically capabie of.* In other
words, data independence is not an absolute; different systems provide it to different
degrees, and few if any provide none at all. Today's SQL systems typically provide more
data independence than older systems did, but they are still far from pcrfect. as we will
see in thc chapters to come. -

1.6 RELATIONAL SYSTEMS AND OTHERS

We have said that SQL systems have come to dominate the DBMS marketplace, and that
one important reason for this state of affairs is that such systems are based on the rela-
tional model of data. Informally, indeed, SQL systems are often referred to as relational

- svstemns. spccxﬁcally In addition, the vast majority of database research over the last 30

years or so has also been based (albeit a little indirectly, in some cases) on the relational
model. Indeed, it is fair to say that the introduction of the relational model in 1969-70 was

the single most important event in the entire history of the database field. For these rea-

sons, plus the fact that the relational model is solidly based on logic and mathematics and

therefore provides an ideal vehicle for teaching database foundations and pnnclples. the -

emphasxs in this book is heavily on relational systems.

- What then exactiy is a relational system? It is obviously not possible to answer this
question properly at this early point in the book—but it is possible, and desirable, to give a
rough and ready answer, which we can make more precise later. Bncﬁy, then (albeit very
loosely), a relational system is a system in which:

l The data is percewed by the user as tables (and nothing but tables)

. The operntors ‘available to the user for (e.g.) retrieval are operators that derive “new”
tables from “old™ ones. For example, there is one operator, restrict, which extracts a
subsct of the rows of a given table, and another, project, which extracts a subset of the
columns-—and a row subset and a column subset of a table can both be regarded in
turn as tables in their own right, as we will see in just 2 moment.

So why are such systems called “relational™? The reason is that relation is basically
just a mathematical term for a table, (Indeed, the terms relation and table—sometimes
relational table for emphasis—can be taken as synonymous, at least for informal purposes.
See Chapters 3 and 6 for further discussion.) Please note that the reason is definitely not
that relation is “basically just a mathematical term for” a relationship in the sense of
entity/relationship diagrams as described in Section 1.3; in fact, as noted in that section,
there is very little direct connection between relational systems and such diagrams.

As promised, we will make the foregoing definitions much more precise later, but
they will serve for the time being. Fig. 1.8 provides an illustration. The data—see part g of
the figure—consists of a single table, named CELLAR (in fact, it is a scaled-down version

4 A striking example of what relational systems are capable of in this respect is described in Appendix A.

5 Despite the [act that in many respects SQL s quite notorious for its departures from the relational
model, as we will see,

e ekt W e W M e b1t ettt e e

p Chapter 1 | An Overview of Database Management 27

a. Given table: CELLAR WINE YEAR | BOTTLES
’ Zinfandel 1999 2

- Fumé Blanc | 2000 2

Pinot Noir 1997 3

zinfandel 1998 9

b, Operators {examples):

1. Restrict: Result: | WINE YEAR | BOTTLES
SELECT WINE, YEAR, BOTTLES Zinfandel 1999 2
FROM CELLAR , Fumé Blanc | 2000 2
WHERE YEAR > 1998 ;

2. Project: ‘Result: | WINE BOTTLES
SELECT WINE, BOTTLES .-.:::. Zinfandel 2
FROM CELLAR ; . SRR Fumé Blanc 2

. Pinot Noir 3
Zinfandel 9

Fig.1.8 Data structure and oPerétcl:-rs in‘a relational system {examples)

of the CELLAR table from Fig. 1.1, reduced in size to.make it more manageable). Two .

‘sample retrievals, one involving a restriction or row-subsetting operation and the other a
projection or column-subsetting operation, are shown in part b of the figure. The examples
are exprcsscd in SQL once again.

" We can now distinguish between relational and nonrelational systems In a relational
systcm. the user sees the data as tables, and nothing but tables (as already explained). Ina
nounrelational system, by contrast, the user sees other data structures (either instead of o
as well as the tables of a relational system). Those other structures. in turn, require other
operators o access them. For example. in a hierarchic system like BM's [MS, the data is
represented to the user in the form of trees (hierarchies), and the operators provided for
accessing such trees include operators for following pointers (namely, the pointers that

implement the hierarchic paths up and down the trees). By contrast, as the examples in

this chapter have shown, it is precisely an imponant distinguishing characteristic of rela-
tional systems that they involve no pointers (at least, no pointers visible to the user—ic.,
no pointers at the model level—though there might well be pointers at the level of the
physical implementation).

" As the foregoing discussion suggests, database systems can be conveniently catego-
rized according to the data structures and operators they present to the user, According o
this scheme, the oldest (prerelational) systems fall into three broad categories: inverted
list, hierarchic, and network systems. 8 (Note: The term network here has nothing to do

B analngy with the relational model, earlier editions of this book referred to inverted list, hierarchic,
and nétwork models {and much of the literature still does). To talk in such terms is a little misleading,
however, because—unlike the relational model-—the inverted list. hierarchic, and network “models” were
all invented after the fact; that is, commercial inverted list, hierarchic. and network products wers imple-
mented first, and the corresponding “models™ were defined .mb.requemlv by a process of induction {in this
context, a potite term for guesswork) from those existing implementations, See the annotatioa to refer-
eace {1.1] for further discussion. e

1r e rees Separaweon
L e L AR

T ISR TR AT P LR ey T L

ey

R AT

v

o
W

e ernte
s et e

e i

SR T S e

o)

o o

b e

LI S

o e
et s =

P

28 Part! | Preliminaries

Tl P s e 3

I RO T TR e 4 e =

A R RO A =) AT YT gt Mkl vt ik ks e m, e 7t P EIAEAE

frpa b SR

I

with networks in the data communications sense, as described in the next chapter.) We do
not discuss these categories in detail in this book because—from a technelogical point of
view, at least—they must be regarded as obsolete. You can find tutorial descriptions of all
three in reference [1.5] if you are interested.

As an aside, we remark that network systems are sometimes called either CODASYL
systems of DBTG systems, after the committee that proposed them: namely, the Data
Base Task Group (DBTG) of the Conference on Data Systems Languages (CODASYL).
Probably the best-known example of such a system is IDMS, from Computer Associates
International Inc. Like hierarchic systems (but unlike re]anonal ones), such systems all
expose pointers to the user.

The first relational products began to appear in the late 1970s and early 1980s. At the
time of writing, the vast majority of database systems are relational (at least, they support
SQL), and they run on just about every kind of hardware and software platform available.
Leading examples include, in alphabetical order, DB2 (various versions) from IBM Corp., ,
Ingres II from Computer Associates International Inc., Inforhix’ Dynamic Server from
Informix Software Inc.,’ Microsoft SQL Server from Microsoft Corp., Oracle 91 from
Oracle Corp., and Sybase Adaptive Server from Sybase Inc. Note: When we have cause to
refer 1o any of these products later in this book, we will refer to them. (as most of the
industry does, informally) by the abbreviated names DB2, Ingres (pronounced “ingress”),
Informix, SQL Server, Oracle, and Sybase, respectively. :

Subscquently, object and object/relational products began to become available—
object systems in the late 1980s and early 1990s, object/rclauonal systems in the late
1990s. The object/relational systems are extended versions of certain of the original
SQL products (e.g., DB2, Informix); the object—sometimes object-oriented—systems
represent attempts to do something entirely different, as in the case of GemStone from
GemStone Systems Inc. and Versant ODBMS from Versant Object Technology. Such sys-
tems are discussed in Part V1 of this book. (We should note that the term object as used in
this paragraph has a rather specific meaning, which we will explain when we get to Part
V1. Prior to that point, we will use the term in its normal generic sense, barring explicit
statements to the contrary.)

In addition to the approaches already mentioned, research has proceeded over the
years on 2 variety of alternative schemes, imcluding the multi-dimensional approach and
the logic-based (also called deductive or experr) approach. We discuss multi-dimensional
systems in Chapter 22 and logic-based systems in Chapter 24. Also, the recent explosive
growth of the World Wide Web and the use of XML has generated much interest in what
has become known (not very aptly) as the semxstmctured approach We d:scuss ‘sermni-
structured” systems in Chapter 27.

¢

1.7 SUMMARY

We close this introductory chapter by summarizing the main points discussed. First, a
database system can be thought of as a computerized record-keeping system. Such a sys-

7 The DBMS division of Informix Software Inc, was acquired by IBM Corp. in 2001.

Chapter 1 | An Overview of Database Management 29 -

tem involves the data itself (stored in the database), hardware, software (in particular

_ the database management system or DBMS), and—most important!-—users. Users in
tum can be divided into application programmers, end users, and the database admin-
istrator or DBA. The DBA is responsible for administering the database and database sys-
tem in accordance with policies established by the data administrator or DA.

Databases are integrated and (usually) shared; they are used to store persistent
data. Such data can usefuliy, albeit informally, be considered as representing entities,
together with relationships among those entities—although in fact a relationship is really
just a special kind of cnnty We very briefly examined the ideaof entity/relntionship

Tams. -
jg batabase systems provide a number of benefits, of which one of the most important is
(physical) data independence, Data independence can be defined as the immunity of
application programs to chaidges in the way the data is physically stored and accessed.
Among other things, data independence requires that a sharp distinction be made between
the data model and its unplérﬁentation (We remind you in passing that the term data
model, perhaps unfortunately, has two rather different meanings.)

Database systems also usually support transactions or logical units of work. One
advantage of transactions is that they are Buaranteed to be atomic (all or nothmg). even if
the system fails in the middle of the transaction-in question, - -

Finally, database systerhs can be based on a fumber of dlffcrent approaches. Rela-

tional systems in particular are based on a-formal theory called the relational model,
according to which data is represented as rows in-tables (interpréted as true proposi-
" tions), and operators are provided that directly support the process of inferring additional
true propositions from the given ones. From both an economic. and a theoretical perspec-
tive, relational systems are easily the most xmporr.ant (and this state of affairs is not likely
to change in the foreseeable future). We have seen a few simple examples of SQL. the
standard language for relational systems (in particular, examples of the SQL SELECT,
INSERT, DELETE, and UPDATE statements). This book is heavily based on relational
systems, although—for reasons cxplamed in the prcfacc—not so mych: on SQL per se.

EXERCISES

1.1 Explam the following in your own words: i
binary relationship _ menu-driven interface
command-driven interface multi-user system .
concurrent access online application
data administration persistent data
database ‘ property
database system ' query language
data independence redundancy

- DBA relationship

DBMS ~security’

30

Part I | Preliminaries

entity J
entity/relationship diagram
forms-driven interface
integration

integrity

sharing
stored field
stored file
stored record
fransaction

1.2 What are the advantages of using a database system? What are the disadvantages?
13 What do you understand by the term relarional system? Distinguish between relational and

nonrelational systems.

1.4 What do vou understand by the term data mode!? Explain the difference between a data model
and its implementation. Why is the difference important?
1.5 Show the effects of the following SQL retrieval operations on the wine cellar database of

Fig. L.t

4. SELECT WINE, PRODUCER
FROM CELLAR
WHERE BIN: = 72 ;

b. SELECT WINE, PRODUCER
FROM CELLAR
WEERE YEAR > 2000 ;

¢. SELECT BIN#, WINE, YEAR
FROM CELLAR :
WHERE READY < 2003 ; .

d. SELECT WINE, BIN#, YEAR ;

FROM CELLAR
WHERE

AND BOTTLES > 6 ;

PRODUCER = 'Robt. Mondavi’

1.6 Give in your own words an interpretation as a true proposition of a typical row from each of

your answers to Exercise 1.5.

1.7 Show the effects of the following SQL update operations on the wine cellar database of Fig, 1.1

a. INSERT))
INTO CELLAR (BIN&, WINE, PRODUCER, YEAR, BOTTLES, READY)
VALUES (80, 'Syrah’, 'Meridian', 1998, 12, 2003) ; -
b. DELETE .
FROM CELLAR

WHERE READY > 2004 ;

C¢. UPDATE CELLAR
SET BOTTLES = §
WHERE BIN$¢ = 50 ;

d. UPDATE CELLAR
SET
WEERE BINE = S0 ;

BOTTLES = BOTTLES + 2

1.8 Write SQL statements to perform the following operations on the wine cellar database:
a. Get bin number, name of wine, and number of bottles for all Geyser Peak wines.

b. Get bin number and pame of wine for all wines for which there are more than five botties in

stock. ,
¢. Get bin number for all red wines,

S R P PSPPIV B W

Chapter 1 | An Overview of Database Management

d. Add three botties to bin number 30.
¢. Remove all Chardonnay from stock.

f. Add an entry for a new case (12 bottles) of Gary Farrell Merlot: bin number 53, year 2000,
ready in 2005. .

1.9 Suppose you have a music collection consisting of CDs and/or minidiscs and/or LPs and/or
audiotapes, and you want to build a database that will let you find which recordings you have fora .
specific composer (e.g.. Sibelius) or conductor (e.g.. Simon Rattle) or soloist (e.g., Arthur Grumi-
aux) or work (e.g.. Beethoven's Fifth) or orchestra (e.g., the New York Philharmonic) or kind of
work (e.g.. violin concerto) or chamber group (e.g.. the Kronos Quartat). Draw an entity/relationship
diagram like that of Fig. 1.6 for this database,

REFERENCES AND BIBLIOGRAPHY

11 E. F. Codd: “Data Models in“Database Management.” Proc, Workshop on Data ‘Abstraction,
Databases, and Conceptual Modeiling, Pingree Park. Colo, (June 1980), ACM SIGMOD Record 11,
No. 2 (February 1981) and eisewhere.

Codd was the inventor of the relanonal model, which he first described in reference [6.1). Ref-

erence {6.1], however. did not in fact define the term data model as such-—but the present much
- later paper does. It also addresses the question: What-purposes are data models in general, and

the refational model in particular, inteaded to serve? And it goes on to offer evidence to support

the claim that, contrary to popular belief, the relational model was in fact the first data model 10

be defined. In other words, Codd has some claim to being the inventor of the data model con-
" cept in general. as well as of the relational data model in particular.

1.2 Hugh Darwen: “What a Database Really Is: Predicates and Propositions,” in C. J. Date, Hugh
Darwen, and David McGoveran. Relational Darabase Writings 1994-1997. Reading, Mass.:
Addison-Wesiey (1998).

This paper gives a very approachable (informal but accurate) explanation of the idea. discussed
briefly near the end of Section 1.3, that a database is best thought of asa co[lectmn of true
propositions.
1.3 C. J. Date and P. Hopewell: “Storage Structures and Physical Data Independence,” Proc. 1971
ACM SIGFIDET Workshop onr Data Definition, Access, and Control, San Diego, Calif, (November
1971).
L4 C. J. Date and P. Hopewell; “File Definition and Logical Data Independence,” Proc. 1971 ACM
SIGFIDET Workshop on Data Definition, Access, and Control, San Diego, Calif, (November 1971).

-~ References [1.3] and [1.4] were the first papers to define and distinguish between physical and
logical data independence, ;

L5 C.J, Date: Relational Database Writings 1991-1994. Reading, Mass.: Addison-Wesley (1995).

!

P

>
- S A s Y
i T

C b

s A e it BB Lk mima + ke o L

b ad [ETRP—

-

*

CHAPTER

. . s

System Architecture

2.1 Introduction
2.2 . The Three Leve]s of the Architecture

.23 . The External Lev_e_z!_

24 - The Conceptual Lével
2.5 The Internal Leve] -
2.6 Mappings .~
27 The Database Administrator
2.8 The Database Manageinent System
2.9 Data Communications
210 Client/Server Architecture
211 Utilities |
212 Distributed Processing
213 Summary |
Exercises . | |
Reference;s and Bibliograf:hy

2.1 INTRODUCTION

We are now in a position to present an architecture for a database system. Our aim in pre-
senting this architecture is to provide a framework on which subsequent chapters can
build. Such a framework is useful for -describing general database concepts and for
explaining the structure of specific database systems-—but we do not claim that every sys-
tem can neatly be matched to this particular framework, nor do we mean to suggest that

[

33

34 Partl | Preliminaries

this particular architecture provides the only possible framework. In particular, *small”
systems (sce Chapter 1) will probably not support all aspects of the architecture, However,
the architecture does seem to fit most systems reasonably well; moregver, it is basically
identical to the architecture proposed by the ANS/SPARC Study Group on Data Base
Management Systems (the so-called ANSI/SPARC architecture—see references [2.1] and
[2.21). We choose not to follow the ANSI/SPARC terminology in every detail, however,

Caveat: This chapter resembles Chapter 1 inasmuch es, while an understanding of the
material it contains is essential to a full appreciation of the structure and capabilities of 2 -
modemn database system, it is again somewhat abstract and dry. As with Chapter |, there-
fore. you might prefer just to give the material a “once over lightly” reading for now and
come back to it later as it becomes more directly relevant to the topics at hand.

2.2 THE THREE LEVELS OF THE ARCHITECTURE

The ANSUSPARC architecture is divided into three levels, usually referred to as the inter-
nal level, the external level, and the conceptual level (see Fig, 2.1), though.other names
are also used. Broadly speaking: '

= The internal level (also known as the storage level) is the one closest to physical stor-
age—that is, it is the one concerned with the way the data is stored inside the system.

~ ® The external level (also known as the user lag'ical level) is the one closest to the
" users—that s, it is the one concerned with the .way the data is seen by individuai
users, ‘ ' ' : . ' '
® The conceptual level (also known as the community logical level, or sometimes just
the logical level, unqualified) is a level of indirection between the other two.
Observe that the external level is concerned with individual user perceptions, while

the conceptual level is concerned with a community user perception. As we saw in Chap-
ter I, most users will not be interested in the total database, but only in some restricted

Externallevet | | + |______]
(individual user views) y,
\ \ // /
. : yaw .
Conceptual level -
(community user view)
Internal level
(storage view)

Fig. 2.1 The three levels of the architecture

Chapter 2 | Database System Architecture 38

portion of it; thus, there will be many distinct “external views,” each consisting of a more
or less abstract representation of some portion of the total database, and there will be pre-
cisely one “conceptual view,” consisting of a similarly abstract representation of the data-
base in its entirety. And then there will be precisely one “internal view,” representing the
database as stored internally. Note that (to use the terminology of Chapter) the external
and conceptual levels are both model levels, while the internal level is an implementation
level; in other words, the external and conceptual levels are defined in terms of user-
oriented constructs such as records and fields. while the internal level is defined in terms
of machine-oriented constructs such as bits and bytes.

An example will help 1o make these ideas clearer. Fig. 2.2 shows the conceptual view,
the corresponding internal view, and two corresponding external views (one for a PL/T user
and one for a COBOL user!), Il for a simple personnel database. Of course, the example

is completely hypothetical—it is not intended to resemble any real system—and many
irrelevant details have delibemeg_gg_becn omitted. Explanation:

1. At the conceptual level, the database contains information concerning an entity tyﬁ:}:
called EMPLOYEE. Each individual employee has an EMPLOYEE_NUMBER (six
characters), a DEPARTMENT_-NUMBER (four characters), and a SALARY (five
decimal digits), '

2. At the internal level, employees are represented by a stored record type called
STORED_EMP, 20 bytes long. STORED_EMP contains four stored felds: a 6-byte
prefix (presumably containing control information such as codes, fiags, or pointers),
and three data fields corresponding to the three properties of emplovees. In addition,
STORED_EMP records are indexed on the EMP# field by an index called EMPX,
whose definition is not shown.

External (PL/I)]|] External (cosoL) |
DCL 1 EMPP, 01 EMPC. i
2 EMP& CHAR(G), 02 EMPNO PIC X(6). = |
2 SAL FIXED BIN(31); : 02 DEPTNO PIC (4.
Conceptual l
EMPLOYEE

EMPLOYEE NUMBER CHARACTER(S)
DEPARTMENT _NUMBER CHARACTER(4)
SALARY | DECIMAL(S)

Internal ’

STORED_EMP ' BYTES=20

PREFIX BYTES=§,O0FFSET=0

EMP§ ' . BYTES=6,0FFSET=6, INDEX=EMPX
DEPT# BYTES=4 ,0FFSET=12

PAY BYTES=4 , ALIGN=FULLWORD, OFFSET=1§

Fig. 22 .An emple of the three levels

1 we apologize for using such ancient languages.as the basis for this example. but the fact is that PL/I and
COBOL are both still widely used in commercial instajlations. e

e i

v-.i-a-iv

R T

i

IRt

36

PartI | Preliminaries

3. The PL/I user has an extemal view of the database in which each cmployee is repre-
sented by a PL/I record containing two fields (department numbers are of no interest
to this user and have therefore been omitted). The record type is defined by an ordi-
nary PL/T structure declaration in accordance with normal PL/T rules.

4. Similarly, the COBOL user has an external view in which each-employee is repre-
sented by a COBOL record containing, again, two fields (this tine, salaries have been
omitted). The record type is defined by an ordmary COBOL record description in
accordance with normal COBOL rules.

Notice that corresponding data items can have different names at different points in
the foregoing scheme. For example, the employee number is called EMP# in the PL/I
external view, EMPNO in the COBOL external view, EMPLOYEE_NUMBER in the con-
ceptual view, and EMPi# again in the internal view. Of course, the system must be aware
of the correspondences; for example, it must be told that the COBOL field EMPNO is

derived from the conceptual field EMPLOYEE_NUMBER, which in turn is derived from -

the stored field EMP# at the internal level. Such correspondences, or mappings, a* * not
explicitly shown in Fig. 2.2: see Section 2.6 for further discussion.

Now, it makes little difference for the purposes of the present chapter whether the sys-
tem under consideration is relational or otherwise, However, it might be helpful to indicate
briefiy how the three levels of the architecture are typically rea]xzed in a relational system
specifically:

w First, the conceptual level in such a system will definitely be relational, in the sense
that the objects visible at that level will be relational tables and the operators will be
relational operators (including in particular the restricz and pro]ecr operators dis-
cussed briefly in Chapter 1).

u Second, a given external view will typically be relational 100, or something very close
to it; for example, the PL/T and COBOL record declarations of Fig. 2.2 might loosely
be regarded as PL/I and COBOL analogs of the declaration of a relational table in a
relational system. Note: We should mention in passing that the term exrernal view

(usually abbreviated to just view) unfortunately has a rather specific meaning in rela- -

tional contexts that is nor identical to the meaning assigned to it in this chapter. See
Chapters 3 and (especially) 10 for an explanation and discussion of the relational
meaning.

» Third, the internal level will not be relational, because the objects at that level will not
be just (stored) relational tables~—instead, they will be the same kinds of objects
found at the internal level of any other kind of system (stored records, pointers,
indexes, hashes, etc.). In fact, the relational model as such has nothing whatsoever
to say about the internal level; it is, to repeat from Chapter 1, concerned with how the
database looks to the user.

We now proceed to discuss the three levels of the architecture in considerably more
detail, starting with the external level. Throughout our discussions we will be making
repeated references to Fig, 2.3, which shows the ma_;or components of the m'cmtecture and
their mtcrrelatlonshlps .

atlatte o IV 4T Wt .

Chapter 2 [Database System Archifecture 37

User A1 User A2 User B1 User B2 User B3

Host Host | Host Host Host
language| '|language language language language | ——-
+ DSL +DSL || +DSL -+ DSL +DSL
'f 'External “External [-
{ schema | External view A schema External view B j==—==~
| A B
Schemas !
!
and { ..
mappings ! * External/conceptual External/conceptual
built and ~mapping A mapping B
maintained CREL |
by the c copt ! - management
database { - Lonceptual § conceptual view | —tmae—sm g
N administrator - schema. : R system
A T (DBMS)
(DBA) j
' Conceptuallinternal
E mappmg ')
Storage o DA
- structure
definition Fe:d:d 2b EQ C!J
(internal Stored database (nterna wew)
kschema) J LJ L—J
{ *User interface|
Fig. 23 Detailed system arclﬁtecture -' - T e '

2.3 THE EXTERNAL LEVEL

The external level is the individual user level. As explained in Chapter 1, a given user can
be an application programmer or an end user of any degree of sophistication. (The DBA is
an important special case; unlike other users, however, the DBA will need to be interested
in the conceptual and internal levels also. See the next two sections.)

Each user has a language at his or her disposal:

» For the application programmer, that language will be either a conventional program-
ming language (e.g., Java, C4+, or PL/I} or perhaps a proprictary language that is
specific to the system in question. Such proprietary languages are sometimes called
Jfourth-generarion languages or 4GLs, on the (fuzzy!) grounds that (a) machine code,
assembler language, and languages such as Java or C++ or PL/I can be regarded as
three earlier language “generations,” and (b) the proprictary languages represent the
same kind of improvement over third-generation languages (3GLs) as those lan-
guages did over assembler language and assembler language did over machine code.

E t s w

——— et L n + e

38 Partl | Preliminaries

® For the end user, the language will be either a query language (probably SQL) or
some special-purpose language, perhaps forms- or menu-driven, tailored to that
user’s requirements and supponed by some online application as explained in Chap-
ter 1. o

For our purposes, the important thing about all such languages is that they will
include a data sublanguage—that is, a subset of the total language that is concerned spe-
cifically with database objects and operations. The data sublanguage (abbreviated DSL in
Fig. 2.3) is said to be embedded within the corresponding host language. The host lan-
guage is responsible for providing various nondatabase facilities, such as local variables,
computational operations, branching logic, and so on. A given system might support any
number of host languages and any number of data sublanguages; however, one particular
data sublanguage that is supported by almost ail current systems is the language SQL. dis-
cussed bncﬂy in Chapter 1. Most such systems allow SQL to be used both interactively as
a stand-alone query language and also embedded in other languages such as Java or C++
or PL/I (see Chapter 4 for further discussion).

Now, although it is convenient for architectural purposes to dxstmgmsh between the
'data sublanguage and its containing host language, the two might in fact nor be distinct as
far as the user is concerned; indeed, it is probably preferable from the user’s perspective if
they are not. If they are not distinct, or if they can be distinguished only with difficulty, we

_say thcy are tightly coupled (and the combination is called a database programming lan-
guage') If they are clearly and easily separable, we say they are loosely coupled. Some
commercial systems—including in particular certain SQL products, such as Oracle—sup-
port tight coupling, but not all do (tight coupling provides a more uniform set of facilities
for the user but obv;ously involves more effort on the part of the system impilementers, a
fact that presumably accounts for the status guo).

In principle. any given data sublanguage is really a combination of at lenst two subor-
dinate languages—a data definition language (DDL), which supports the definition or
“declaration” of database objects, and a data manipulation language (DML), which sup-
ports the processing or “manipulation™ of such objects.? For example. consider the PL/T
user of Fig. 2.2 in Section 2.2. The data sublanguage for that user consists of those PL/I fea-
tures that are used to communicate with the DBMS: - :

a The DDL portion consists of those declarative constructs of PL/I that are needed to
declare database.objects—the DECLARE (DCL) statement itself, certain PL/I data
types, and possibly special extensions to PL/I to deal with new kinds of ob]ects not
supported by existing PL/I.

= The DML portion coasists of those executable statements of PLJI that transfer infor-
mation into and out of the database—again, possibly including special new state-
ments.

1 The language Tutorial D that we will be using in later chapters as a basis for examples—see the
remarks on this topic in the preface to this book—is a database programming language in this sense.

3 This rather i inappropriate use of the term manipulation has become sanctioned by usage.

31y AR e o et 4 B

24 THE CONCEPTUAL LEVEL

|

Chapter 2 | Database System Architecture 39

(In the interest of accuracy, we should make it clear that PL/I does not in fact include any
specific database features at the time of writing. The “DML"” statements in particular arc
typically just PL/I CALL statements that invoke the DBMS—though those calls might be
svntncucally disguised in some way to make them a little more user-friendly; see the dis-
cussion of embedded SQL in Chapter 4.) ‘

To return to the architecture: We have alreadv indicated that an individual user will
gencrally be interested only in some portion of the total database; moreover, that user’s
view of that portion will generally be somewhat abstract when compared with the way the
data is physically stored. The ANSI/SPARC term for an individual user’s view is an exter-
nal view. An external view is thus the content of the database as seen by some particular
user: to that user, in other words, the external view is the database. For example. a user
from the Personnel Department might regard the database as a collection of department
and employee record occurrences, and might be quite unaware of the supplier and part
record occurrences seen by users in the Purchasing Department.

In general, then, an extcmai view consists of many occurrenccs of many types= pf
external record (not necessanly the same thing as a stored rccord) The user's data sﬁ'b
language is thus defined in terms of external records; for example. a DML retrieve op
tion will retrieve external record-occurrences, not stored record occurrences. (Incidental ‘l \
we can now see that the term logical record used a couple of times in Chapter 1 actually
referred to an extemnal record. From tlus point forward, in fact, we will generally avoid the

. term logical record.)

Each extemnal view is defined by means of an external schema. which consists bns:-
cally of definitions of each of the various external record types in that external view
(again, refer back 10 Fig. 2.2 for a couple of simple examples). The external schema is

~ written using the DDL portion of the user’s data sublanguage. (That DDL is therefore
sometimes referred to as an external DDL.) For example. the employee external record
type might be defined as a six-character employee number field plus a five-digit (decimai)
salary field. and so on. In addition, there must be a definition of the mapping between the
external schema and the underlying conceptual schema (see the nexs section). We will
;onsnder lhat mapping later, in Section 2.6.

.

The conceptual view is a re;’iresemation of the entire information content of the database,
~~again (as with an external view) in a form that is somewhat abstract in comparison with
the way in which the data is physically stored. It will also be quite different, in general,
from the way in which the data is viewed by any particular user. Broadly speaking, the

4 Weare assuming here that all information is represented at the external level in the form of records spe-
cifically. However, some systems aflow information to be represented in other ways iastead of or as well
as records. For a system using such altemative methods, the definitions and explanations given in this sec-
tion will require suitable modification. Anzlogous remarks apply to the conceptual and internal levels
aiso. Detailed consideration of such matters is beyond the scope of this early part of the book: see Chap-

ters 14 (especially the “References and Bibliography™ section) and 25 for further discussion. See also—in
connection with the internal level in particular—Appendix A.

-

I

B
'
7
"
.
i
o3
-
it
i)
b
v
Ehe
1
wif
KT
iy
)
e
ol
i
R

‘" ,,-__ --...-\ b
AT ORI .1'4)

Part [| Preliminaries

2.5 THE INTERNAL LEVEL

conceptual view is intended to be a view of the data “as it really is,” rather than as users are
forced to see it by the limitations of (for example) the particular language or hardware they
might be using.

The conceptual view consists of many occurrences of many types of conceptual
record. For example, it might consist of a collection of department record occurrences,
plus a collection of employee record occurrences, plus a collection of supplier record
occurrences, plus a collection of part record occurrences, and so on. A conceptual
record is not necessarily the same as either an external record, on the one hand, or a
stored record, on the other.

The conceptual view is defined by means of the conceptual schema, which includes
definitions of each of the various conceptual record types {(again, refer to Fig. 2.2 for a
simple example). The conceptual schema is written using another data definition lan-
guage, the conceptual DDL. If physical data independence is to be achieved, then those
conceptual DDL definitions must not involve any considerations of physical representa-
tion or access technique at all—they must be definitions of information content onfy.
Thus, there must be no reference in the conceptual schema to stored field repreéentation.
stored record sequence, indexes, hashing schemes, pointers, or any .other storage and
access details. If the conceptual schema is made truly data-independent in this way, then
the external schemas, which are defined in terms of the conceptual schema (see Section
2.6), will a fortiori be data-independent too.

The conceptual view, then, is a view of the total database content, and the conceptual
schema is a definition of that view. However, it would be rmsleadmg to suggest that the
conceptual schema is nothing more than a set of definitions much like the simple record
definitions found in (e.g.) a COBOL program today. The definitions_in the conceptual
schema are intended to include a great many additional features, such as the security and
integrity constraints mentioned in Chapter 1. Some authorities would go as far as to sug-
gest that the ultimare objective of the conceptual schema is to describe the complete enter-
prise—-not just its data per se, but also how that data is used: how it fiows from point to
point within the enterprise, what it is used for at each point,"what audit or other controls
are to be applied at each point, and so on {2.3]. It must be emphasized, however, that no
system today actually supports a conceptual schema of anything approaching this degree
of comprehensiveness;” in most existing systems, the “conceptual schema” is little more
than a simple union of all of the individual external schemas, plus certain security and
integrity constraints. But it is certainly possible that systems of the future will be much
more sophisticated in their support of the conceptual level.

The third level of the architecture is the internaj level. Thc internal \ncw is a low-level
representation of the entire database; it consists of many occurrences of many types of
_internal record. Internal record is the ANSI/SPARC term for the construct that we have

5 Some might argue that the so-called business rule systems come ;:Ios'e (see Chapters 9 and 14),

Chapter 2 | Database System Architecture 41

been calling a stored record (and we will continue to use this latter term). The internal
view is thus still at one remove from the physical level, since it does not deal in terms of
physical records—also called blocks or pages—nor with any device-specific consider-
ations such as cylinder or track sizes. In other words, the internal view effectively assumes
an unbounded linear address-space; details of how that address space is mapped to physi-
cal storage are highly system-specific and are deliberately omitted from the general archi-
tecture. Note: In case you are not familiar with the term, we should explain that the block,
or page, is the unit of I/O=that is, it is the amount of data transferred between secondary
storage and main memory in a single /O operation. Typical page sizes can be anywhere
from KB or less to 64KB or so, where (as we will see later) 1KB = one k:lobyte = 1024
bytes.
" The internal view is described by means of the internal schema which not only
defines the various stored reco:d .types but also specifies what indexes exist, how stored
~ fields are represented, what phyihcal sequence the stored records are in, and so on (once
again, see Fig. 2.2 for a simple example: see also Appendix D, online). The internal
schema is written using yet another data definition language—-—&he lnternal DDL.

Note: In what follows, we-will-tend to use the more intuitive terms srored darabase
and stored database definition in place of internal view and mremal schema, respectively.
Also, we observe that, in certain exceptional situations, apphcatlon programs—in particu-
lar, those of a utility narure (see Section 2. 11)}—might be penmtted to operate dlrectly at
the internal level rather than at the external level. Needless to say, the practice is not rec-
ommended: it represents a security risk (since the security constraints are bypassed) and
-an integrity risk (since the integrity constraints are bypassed hkewlse). and the program
will be data-dependent to boot; but sometimes it rmght be the only way to obtain the
required functionality or performance-———just as.an apphcatxon pfogrammer might occa-
sionally have to descend to assembler language in order to satisfy certain functionality or
performance objccuves in a programming language system

ot

2.6 MAPPINGS . S

In addition to the three levels per se, the architecture of Fig. 2.3 involves certain map-
pings—one conceptual/internal mapping and’several extemallconceptual mappings, in
general: .

® The concep:ual/‘mtemql mapping defines the correspondence between the conceptual

. view and the stored database; it specifies how conceptual records and fields are repre-

sented at the internal level. If the structure of the stored database is changed—that is,

if a change is made to the stored database definition—then the conceptual/internal

mapping must be changed accordingly, so that the conceprual schema can remain

invariant. (It is the responsibility of the DBA, or possibly the DBMS, to manage such

- changes.) In other words, the effects of such changes must be isolated below the con-
ceptual level, in order to preserve pliysical data independence,

® An external/conceptual mapping defines the correspondence between a particular
external view and the conceptual view. In general, the differences that can exist

LI PP

L

T

" -

e N
. e . - . .
o A ey let bt e —rn, 4ap e . 2
e ram Com

" 44

Part [{ Preliminaries

dump/restore purposes. In this connection, note that multi-terabyte systemsﬁ—-that is,
commercial database installations that store several trillions of bytes of data, loosely
speaking—already exist, and systems of the future are predicted to be much larger. It
goes without saying that such VLDB (“very large database™) systems require very
careful and sophisticated administration, especially if there is a requirement for con-
tinuous availability (which there usually is). Nevertheless. we will continue to talk (for
the sake of simplicity) as if there were in fact just a single database.

 Monitoring performance and responding to changing requiremenis

As indicated in Chapter 1, the DBA is responsible for organizing the system insuch a
way as to get the performance that is “best for the enterprise,” and for making the

 appropriate adjustments—that is, tuning—as requirements change. For example, it

might be necessary to reorganize the stored database from time to time to ensure that
performance levels remain acceptable. As already mentioned, any change to the inter-
nal Jeve! of the system must be accompanied by a comresponding change to the defini-

tion of the conceptual/internal mapping, so that the conceptual schema can remain

constant. o : -

Of course, the foregoing is not an exhaustive list—it is merely intended to give some
idea of the extent and nature of the DBA’s responsibilities. '

2.8 .THE DATABASE MANAGEMENT SYSTEM

The dal;:_lbasé management system (DBMS) is the software that handles all access to the
database. Conceptually, what happens is the following (refer to Fig. 2.3 once again):

L. A user issues nn access request, using some particular data sublanéungc_(typicdly

sQLy. - T .

The DBMS uccepts that request and analyzes it. .

3. The DBMé ins‘.)e.c'ts,. in fum, (the object versions of) the external schema for that
user, the corresponding external/conceptual mapping, the conceptual schema. the
conceptual/internal mapping, and the stored database definition.

4. The DBMS executes the necessary operations on the stored database.

By way of an example, consider what is involved in the retrieval of a particular exter-
nal record occurrence. In general, fields will be required from several conceptual record
occurrences, and each conceptual record occurrence in turn will require fields from sev-
eral stored record occurrences. Conceptually, then, the DBMS must first retrieve all
required stored record OCCUITENCes, then construct the required conceptual record occur-

!J

6 1024 bytes = | kilobyte (KB); 1024KB = 1 megabyte (MB): 1024MB = 1 gigabyte (GB); 1024GB = 1
terabyte (TB); 1024TB = 1 petabyte (PB); 1024PB = | exabyte (EB or XB); 1024XB = | zeuabyte (ZBY;
1024Z8 = 1 youabyte (YB). Note in particular that a gigabyte is a billion bytes. looscly speaking (the
abbreviation BB is sometimes used instead of GB). Incidentaily (and contrary to popular belief), gigabyre
-is pronounced with a soft initial g and the § is long (as in gigantic).

e pien n hmﬂﬂm‘ﬁmmﬁuﬁj

S P

b s ke heemarik = ks

4 ahen A nd e

A aRe— Ml

PSRV E S i TR D T L TR S N Py

\

RPN YR K REETORTTUVI R A S T U PRI I A LR A Ao ORISR S S, -
A Lt e e ey oy R R o I o i
B LI R T A

.—-1 I

wh.ﬁ-h—;-
e »
- - - ¢ -
.
"

Chapter 2 | Database System Architecture 45 =

rences, and then construct the required external record occurrence. At each stage, data o

type or other conversions might be necessary.

Of course, the foregoing description is very much simplified: in particular, it suggests
that the entire process is interpretive, inasmuch as it describes the processes of analyzing
the request, inspecting the various schemas, and so on, as if they were all done at run time.,
Interpretation, in turn, often implies poor performance, because of the run-time overhead.
In practice, however, it might be possible for access requests to be compiled prior to run

time (in particular, several of today’s SQL products do this—see, for example, the annota- .

tion to references [4.13] and [4.27] in Chapter 4).
Let us now examine the functions of the DBMS in a little more detail. Those funcnons
will include support for at least ail of the followmg (refer to Fig. 2.4, overleaf): '

. s
M

» Data definition

The DBMS must be able to'accept data definitions (external schcmas the conccpmal
schema, the internal schema, and all associated mappings) in source form and convert
them to the appropriate Objecl form In other words, the DBMS must include DDL
processor or DDL compiler components for each of the various data definition lnn;-

guages (DDLs). The DBMS must also “understand” the DDL definitions, in the sense

that, for example, it “understands™.. that EMPLOYEE external records mclude a
SALARY field, and it must be able to use this knowledge in analyzing and responding
to data manipulation requests {(e.g., *:Get employees with salary < $50,000™).

' W . Data manipulation

The DBMS must be able to handle requests to retrieve, update, or delete existing data |

in the database or t0 add new data to the database. In other words, the DBMS must
include a DML processor or DML compiler component to deal with the data manip-
ulation language (DML).
In general, DML requests can be planned or unplanned:
a. A planned request is one for which the need was foreseen in advance of the time at
- which the request is'made. The DBA will probabiy have tuneg the physical data-
base design in such a way as to guarantee good performance for planned requests.

b. An unplanned request, by contrast, is an ad hoc query or (less likely) update—
that is, a request for which the need was not seen in advance, but instead arose ina
spur-of-the-moment fashion. The physical database design might or might not be
well suited for the specific request under consideration.

.. To use the terminology introduced in Chapter 1 (Section 1.3), planned requests are
characteristic of operational or production applications, while unplanned requests
are characteristic of decjsion support applications. Furthermore, planned requests
will typically be issued from prewritten application programs. whereas unplanned
requests, by definition, will be issued interactively, typically via some query lan-

. guage processor. (In fact, as we saw in Chapter 1, the query language processor is re-

~ ally a built-in online application, not part of the DBMS per se; we include it in Fig.
2.4 only for completeness.)

[

- e

A ——

-

s T T T -';.._f

46

Part! | Preliminaries

Query
DDL OML < language
processors processor ..). processor)
Compiled
requests
Enforce security
Source and and integrity
object schemas Optimizer |<—————m . f constraints.
and mappings '

Optimized
requests
Runtime @@
manager . y

Data E
I\ Metadata 4/'
(data dictionary)
N~ /

Fig.2.4 Major DBMS functions and components

» Optimization and execution

DML requests, planned or unplanned, must be processed by the optimizer compo-
nent, whose purpose is to determine an efficient way of implementing the rcquest’
Optimization is discussed in detail in Chapter 18. The optimized requests are then ex-
ecuted under the control of the run-time manager. (In practice, the run-time manager
will probably invoke some kind of file or storage manager to access the stored data.
File managers are discussed briefly at the end of the present section.)

7 Throughout this book we take the term optimization to refer (o the optimization of DML requests spe-
cifically, barring explicit statements to the contrary.

v
i Loy N) LT
W e amr s el el SN, U linilie ivhei o lanibd ML PR 'i__’;! o

LTRSS
) —% e e e o e . _ N

Chapter 2 | Database System Architecture

s Data security and integrity

The DBMS, or some subsystem invoked by the DBMS, must monitor user requests
and reject any attempt to violate. the security and integrity constraints defined by the
DBA (see the previous section). These tasks can be carried out at compile time or run
time or some mixture of the two, g

® Data recovery and concurrency

The DBMS—or. mote likely, another related software component called the transac-
tion manager or TP moniter—must enforce certain recovery and concurrency con-
trols. Details of these aspects of the system are beyond the scope of this chapter; see
Part IV of this book for an in-depth discussion. The transaction manager is not shown
in Fig. 2.4 because it is usually not part of the DBMS per se.

& Data dictionary

The DBMS must provrdc a aata dictionary function. The data dictionary can be
regarded as a database in its own right (but a system database rather than a user data-
) base); it-contains “data about the data™ (sometimes cailled metadata or descrip-
e tors)—that is, definitions of other objects in the system, instead of just “raw data.” In
particular, all of the various schemas and mappings (external, conceptual, etc.) and all
of the various security and integrity constraints will be kept, in both source and object
form, in the dictionary. A comprehensive dictionary will also include much additional
information, showing, for instance, which programs use which parts of the database,
which users require which reports, and so on. The dictionary might even—in fact,
probably should—be integrated into the database it defines and thus include its own
definition. Certainly it should be possible to query the dictiohary just like any other
database, so that, for example, it is possible to tell which programs and/or users are
likely to be affected by some proposed change to the system. See Chapter 3 for further
v discussion. '

" Note: We are touching here on an area in whichi there is {nuch terminological
confusion. Some people would refer to what we are calling the dictionary as a direc-
tory or a catalog—with the tacit implication that directories and catalogs are some-
how inferior to a genuine dictionary—and would reserve the term dictionary to refer
to a specific (important) kind of application development tool. Other terms that are
also sometimes used to refer to this latter kind of object are data repository (see
Chapter 14) and data enc\ciopedm

W Performance

It goes without saymg that the-DBMS should perform all of its tasks as efficiently as
. possible.

We can summarize all of the foregoing by saying that the overall purpose of the
DBMS is to provide the user interface to the database system. The user interface can be
defined as a boundary in the system below which everything is invisible to the user. By
definition, therefore, the user interface is at the external level. In today’s SQL products,
however, there are some situations—mostly having to do with update operations—in
which the external level is unlikely to differ very significantly from the relevant portion of
the underlying conceptual level. We will elaborate on this issue in Chapter 10.

[} -

af
ik
-
o
.

L ea

43

L

. K ~
* "'—--"—*—tk Ll T ‘_ .'_- J

K W e
T - ua .-

%
R

Part I | Preliminaries

We conclude this section by briefly contrasting database management systems
(DBMSs) with file management systems (file managers or file servers for short). Basically,

. the file manager is that component of the underlying operating system that manages stored

files; loosely speaking, therefore, it is “closer to the disk” than the DBMS is. (In fact,
Appendix D, online, explains how the DBMS is often built on fop of some kind of file man-
ager.) Thus, the user of a file management system will be able to create and destroy stored
files and perform simple retrieva) and update operations on stored records in such files. In
contrast to the DBMS, however:

» File managers are not aware of the internal structure of stored records and hence can-
not handle requests that rely on a knowledge of that structure.

» File managers typically provide little or no support for security and integrity con-
straints.

= File managers typxcally provide lmlc or no support for recovery and concurrency
-controls.

" There is no genuine data dictionary concept at the file manager level,
® File managers prowde much less data independence than the DBMS does.

® Files are tvptcally not “integrated” or “shared” in the same sense that the database is,
but instead are usually private to some particular user or application.

2.9 DATA COMMUNICATIONS

In this sectxon we bneﬂy consxder the topic of data commumcatlons Database requests

. from an end user are actually transmitted from the user’s computer or workstation—which

might be physically remote from the database system itself—to some online application,
built-in or otherwisé, and thence to the DBMS, in the form of communication messages.
Likewise, responses back from the DBMS and online application to the user’s workstation
are also transmitted ‘in the form of such messages. All such message transmissions take
place under the control of another software component, the data communications man-
ager (DC manager).

The DC manager is not part of the DBMS but'is an autonomous system in its own
right. However, since it is clearly required to work in hanmony with the DBMS, the two
are sometimes regarded as equal partners in a higher-level cooperative venture called a
database/data-communications systemi (DB/DC system), in which the DBMS looks
after the database and the DC manager handles ali messages to and from the DBMS, or
more accurately to and from applications that use the DBMS. In this book, however, we
will have comparatively little to say about message handling as such (it is a large subject
in its own right). Section 2.12 does briefiy discuss the question of communication berween
distinct systems (e.g., between distinct machines in a communications network such as the
Internet), but that is really a scparate topic.

TP NP Ty P WLy 1-\.&'1(“1632.-1

U S

ditealn.

Chapter 2 | Database System Architecture 49

210 CLIENT/SERVER ARCHITECTURE

So far in this chapter we have been dlscussmg database systems from the point of view of

" the so-called ANSSPARC architecture, In particular, we gave a simplified picture of
that architecture in Fig. 2.3. In this section we offer a slightly different pchpecuve on the
subject.

The overall purpose of a database system is to support the development and execution

of database applications. From a high-level point of view, therefore, such a system can be
regarded as having a very simple two-part structure, consisting of a'server, also called the
back end, and a sct of clients, also called the front ends (refer to Fig. 2.5). Explanation:

L.

[o4
.

The server is just the DBMS ltself It supports all of the basic DBMS functions dis-.
cussed in Section 2.8—data definition, data manmulanon data security and integrity,

and so on. In other words, "serv:r in this context is just another name for the DBMS :

The clients are the various’ aphllcauom that run on top of the DBMS—both use:-n. . |
written applications and built-in-.applications (i.e., applications provided by thE'_

DBMS vendor or some third pany) As far as the server is concerned, of course, thcre
is no difference between usef<written. and, built-in applications: they all use the same
interface to the scrver—namely. the external-level interface discussed in Section 2.3.:
(We note as an aside that, as mentioned in Section 2.5, certain special “utility” appli-
cations might constitute an exception to the foregoing, inasmuch as they might some-
times need to operate dxrectly at the internal level of the system. Such utilities are

End users

Applications | Clients

!

' DBMS Server .

. Qaiabase'

Fig. 2.5 Client/server architecture -

Bon e o T eIt .
e et ST VDDA Aty

i

T

——— T i LR * . x

S0 Part! | Preliminaries

best regarded as integral components of the DBMS, rather than as applications in the

usual sense. They are discussed in more detail in the next section.)
We elaborate briefly on the question of user-written vs. vendor-provided applications:

User-written applications are basically regular application programs, written (typi-
cally) either in a conventional 3GL such as C++ or COBOL or in some proprietary
4GL~—though in both cases the language needs to be coupled:somehow with an
appropriate data sublanguage, as explained in Section 2.3, -

Vendor-provided applications (often called tools) are applications whose basic pur-
pose is to assist in the creation and execution of other applications! The applications
that are created are applications that are tailored to some specific task (they might not
look much like applications in the conventional sense; indeed, the whole point of the
tools is to allow users, especially end users, to create applications wirthour having to
write programs in a conventional programming language). For example, one of the
vendot-provided tools will be a report writer, whose purpose is to allow end users to
obtain formatted reports from the system on request. Any given report request can be
regarded as a small application program, written in a very high-level (and special-
purpose) report writer language.
Vendor-provided tdols can be divided into several more or less distinet classés:
. Query language processors
Report writers
B e,

. Business graphics subsystems
. Spreadsheets '

Statistical packages

a
b.

c

d

e. Natural language processors
. .

g- Copy management or “data extract” tools
h

- Application generators (including 4GL processors)

Other application development tools, including computer-aided software engineer-
ing (CASE) products

j Data mining and visualization tools

and many others. Details of most such tools are beyond the scope of this book: how-
ever, we remark that since (as stated near the opening of this section) the whole point
of a database system is to support the creation and execution of applications, the qual-
ity of the available tools is, or should be, a major factor in “the database decision” (i.e.,
the process of choosing the right database product). In other words, the DBMS per se
is not the only factor that needs to be taken into account, nor even necessarily the most
significant factor.

We close this section with a forward reference. Since the overall system can be so

neatly divided into two parts, server and clients, the possibility arises of running the two
on different machines. In other words, the potential exists for distributed processing.

Lot by mi drnotiod A Smitedn)

o et Genat e Ty,

B A

Cpamateag s ooy

ETT TR PR

- A e e e St - . - *-n

: Chapter 2 | Database System Architecture 51

Distributed processing means that distinct machines can be connected into some kind of
communications network in such 2 way that a single data processing task can be spread
across several machines in the network. In fact, so attractive is this possibility—-for a vari-
ety of reasons, mainly economic—that the term client/server has come to apply almost

. exclusively to the case where client and server are indeed on different machines. We will
discuss d1stnbutcd processing in more detail in Section 2.12.

211 UTILITIES

Utilities are programs designed to help the DBA with various administration tasks. As
mentioned in the previous section, some utility programs operate at the external level of
the system, and thus are effectively nothing more than special-purpose applications; some
might not even be provided by th&DBMS vendor, but rather by some third party. Other
utilities, however, operate directly at the intemmal level (in other words, they are really part
. of the server), and hence must-be provided by. the DBMS vendor.
e Here are some examples of the kind of uulmcs that are typtcally needed in practice:

= Load routines, to create the initial ve.rsnon of the database from regular data files

= Unload/reload (or dump/restore) routines, to unlond the database or portions thereof
to backup storage and to reload data from such backup copies (of course. the * rcload
utility™ is basically identical to the load utility just menuOned)

‘ _ = Reorganization routines, to rearrange the data in the stored database for various rea-
sons (usually having to do with performance)—-—for cxarnple to cluster data in some
particular way on the disk, or to reclaim space occup:cd by logxcally deleted data

= Statistical routines, to compute various performance st:msucs such as file sizes,
value distributions, /O counts, and so on :

. ® Analysis routines, to analyze the statistics just menuoncd

Of course, this list represents just a small sample of the range of functions that utilities typ-
b ically provide; numerous other possibilities exist.

T e s b
L v ~, - "
B

212 DISTRIBUTED PROCESSING

P ' To repeat from Section 2.10, the term distribured processing means that distinct machines
I ‘ can be connected into a communications network—the Internet provides the obvious

example—such that a single data processing task can span several machines in the net-

work. (The term parallel processing is also used with essentially the same meaning,

except that the distinct machines tend to be physically close together in a “parallel” system
. and need not be so in a “distributed” system; that is, they might be geographically dis-
t persed in the latter case.) Communication among the various machines is handled by some
kind of network management software, possibly an extension of the DC manager (dis-
cussed in Section 2.9), more likely a separate software component.

T

» o

Many levels or varieties of distributed processing are possible. To repeat from Section
2,10, one simple case involves running the DBMS back end (the server) on one machine
and the application front ends (the clients) on ariother. Refer to Fig. 2.6.

. As mentioned at the end of Section 2.10, client/server, though strictly speaking a
purely architectural term, has come to be almost synonymous with the arrangement illus-
trated in Fig. 2.6, in which client and server run on different machines, Indeed, there are
many argumeats in favor of such a scheme:

o ——— LY
o T e - T = —
ek Tyt T T E
. i g — e S e A S e o S e . -;:
3
A
52 Part [| Preliminaries ?‘f
:
i
'
b

m The first is basically just the usual parallel processing argument: namely, two or more
machines are now being applied to the overall task. and server (database) and client ‘
(application) processing are being done in parallel. Response time and th.roughput i
should thus be improved.

m Furthermore, the server machine might be a custom-built machine that is tailored to
the DBMS function (a “database machine”) and might thus provide better DBMS
performance.

n [Likewise, the client machme might be a personal workstauon. tailored to the needs of

the end user and thus able to provide better interfaces, high ava;lablhty, faster
responses, and overall improved ease of use to the user.

a . Several different client machines might be able—in fact, typically wnll be able—to -
. access the same server machine. Thus, a single database might be shared across sev-
eral distinct clients (see Fig. 2.7).

Applications | | Client machine

o ' ~ Transparent ' i
remote access .

I | | | 4

DBMS Server machine _ . }

Fig.2.6 Client(s) and server running on different machines

Chapter 2 | Database System Architecture 53 .

Client
machines

e

Communication
- network

Server
machine

Fig. 2.7 One server machine, many client machines

In addition to the foregoing arguments, there is also the point that running the cli-
ent(s) and the server on separate machines matches the way enterprises actuaily operate. It
is quite common for a single enterprise—a bank, for example-—to operate many comput-
ers, such that the data for one portion of the enterprise is stored on one computer and the
data for another portion is stored on another. It is also quite commgn- for users on one
computer to need at least occasional access to data stored on another. To pursue the bank-
ing example for a moment, it is very likely that users at one branch office will occasion-
ally need access to data stored at another. Note, therefore, that the client machines might
have stored data of their own, and the server machine might have applications of its own.
In general, therefore, each machine will act as a server for some users and a client for
others (see Fig. 2.8); in other words, each machine will support an entire database system,
in-the sense of earlier sections of this chapter.

The final point is that a single client machine might be able to access several different
server machines (the converse of the case illustrated in Fig. 2.7). This capability is desir-
able because, as already mentioned, enterprises do typically operate in such a manner that
the totality of their data is not stored on one single machine but rather is spread across many
distinct machines, and applications will sometimes need the ability to access data from
more than one machine. Such access can basically be provided in two different ways:

= A given client might be able to access any number of servers, but only one at a time
(i.e., cach individual database request must be directed to just one server). In such a
system it is oot possible, within a single request, to combine data from two or more

-

54 Part I | Preliminaries

L)

DTy

Clients -

D Server | D |

Clients Clients

Server . _Server

Communication

_ - network. ‘ i

i ’ RO PR i ' ‘ : 3
Clients Clients {
Server : Server

Fig. 2.8 Each machine runs both client(s) and server

different servers. Furthermore, the user in such a system has to know which particular
machine holds which pieces of data,

® The client might be able to access many servers simultaneously (i.e., 2 single data-
base request might be able to combine data from several servers). In this case, the
servers look to the client from a logical point of view as if they were really a single
server, and the user does not have to know which machines hold which pieces of data.

This latter case constitutes what is usually called a distributed database system.
Distributed database is a big topic in its own right; carried to its logical conclusion, full
distributed database support implies that a single application should be able to operate

. “transparently” on data that is spread across a variety of different databases, managed by a

-

Chapter 2 | Database System Architecture 55

variety of different DBMSs, running on a variety of different machines, supported by a
variety of different operating systems, and connected by a variety of different communica-
tion networks—where “transparently™ means the application operates from a logical point
of view as if the data were all managed by a single DBMS running on a single machine.
Such a capability might sound like a pretty tall order, but it is highly desicable from a
practical perspective, and much effort has been devoted to making such systems a reality.
We will discuss such systems in detail in Chapter 21. :

213 SUMMARY

In this chapter we have looked at database systems from an architectural point of view.
First, we described the ANSI/SPARC architecture, which divides a database system into
three levels, as follows: The internal level is the one closest to physical storage (i.e., it is
the one concerned with the way the data is stored); the external level is the one closest to
the users (i.e., it is the one concerned with the' way the data is viéx'v;d by individual users);
and the conceptual level is a levél of indirection between the other two (it provides a com-
munity view of the data). The data as perceived at each level is described by a schema (or
several schemas, in the case of the external level). Mappings define the correspondence
between (a) a given external schema and the conceptual schema, and (b) the conceptual
schema and the internal schema. Those mappings are the key to the provision of logiecal
and physical data independence, respectively. .

Users—that is, end users and application programmers; both of whom operate at the
cxternal level—interact with the data by means of a data sublanguage, which consists of
at least two components, a data definition language (DDL) and a data manipulation
language (DML). The data sublanguage is embedded in a host language. Please note,
however, that the boundaries (a) between the host language and the data sublanguage and
(b) between the DDL and the DML are primarily conceptual in nature; ideally they should
be “transparent to the user.” S o

We also took a closer look at the functions of the DBA and the DBMS. Among other
things, the DBA is responsible for creating the internal schema (physical database
design); by contrast, creating the conceptual schema (logical or conceptual database
design) is the responsibility of the data administrator. And the DBMS is responsibie,
among other things, for implementing DDL and DML requests from the user. The DBMS
is also responsible for providing some kind of data dictionary function.

Database systems can also be conveniently thought of as consisting of a server (the
DBMS itself} and a set of clients (the applications). Client and server can and often will
run on distinct machines, thus providing one simple kind of distributed processing. In
general, each server can serve many clients, and each client can access many servers. If
the system provides total “transparency”—meaning that each client can behave as if it

were dealing with a single server on a single machine, regardless of the overall physical

state of affairs—then we have a génuine distributed database system.

56 Part I | Preliminaries

_'i
EXERCISES g
2.1 Draw a diagram of the database system architecture presented in this chapter (the ANSV/ }
SPARC architecture). !
2.2 Explain the following in your own words: g
back end © frontend . {
client : e host language i
conceptual DDL, schema. view load 3
conceptual/internal mapping logical database design
data definition language . internal DDL., schema, view i
data dictionary physical database design }
data manipulation language planned request
data sublanguage reorganization
DB/DC system server
DC manager o stored database definition
distributed database unload/reload ;
distributed processing unplanned request]
external DDL., schema, view . user interface -
external/conceptual mapping utility _]
2.3 Describe the sequence of steps involved in retricving a particular external record occurrence. gE
2

4 List the major functions performed by the DBMS.
2.5 Distinguish between logical and physical data independence.
1.6 What do you understand by the term metadata? : i
2.7 List the major functions performed by the DBA.
2.8 Distinguish between the DBMS and a file management system, -
2.9 Give some examples of vendor-provided tools. '
2.10 Give some examples of database utilities. , s

2.11 Examine any dJatabase system that might be available to you. Try to map that system to the
ANSUSPARC architecture as described in this chapter. Does it cleanly support the three levels of the
architecture? How are the mappings between levels defined? What do the various DDLs (external.
conceptual. internal) look like? What data sublanguage(s) does the system support? What host lan-
guages? Who performs the DBA function? Are there any security or integrity facilities? Is there 2
dictionary? Is it self-describing? What vendor-provided applications does the system support? What
utilities? Is there a separate DC manager? Are there any distributed processing capabilities?

L

REFERENCES AND BIBLIOGRAPHY

Most of the following references are fairly old by now, but they are still relevant to the concepts
introduced in the present chapter. See also the references in Chapter 4.

2.1 ANSI/X3/SPARC Study Group on Data Base Management Systems: Interim Report. FDT (bul-
letin of ACM SIGMOD) 7, No. 2 (1975).

adens
AL

el
1

L Daias el P ol o
Al g

oo,

Chapter 2 | Database System Architecture 57

2.2 Dionysios C. Tsichritzis and An&xony Klug (eds.): *“The ANSI/X3/SPARC DBMS Framework:
Report of the Study Group on Data Base Management Systems,” Information Systems 3 (1978).

References [2.1] and [2.2] are the Interim and Final Report, respectively, of the so-called
ANSUSPARC Study Group. Thé ANSI/X3/SPARC Study Group on Data Base Management
"Systems (to give it its full title) was established in late 1972 by the Standards Planning and
Requirements Committee (SPARC) of the American National Standards [nstitute (ANSD) Com-
mittee on Computers and Information Processing (X3). (Note: Some 25 years later. the name
X3 was changed to NCITS—National Committee on Information Technology Standards. A few- -
years later again, it was changed to INCITS—IN for International instead of National.) The .
objectives of the Study Group were to determine which areas. if any, of database technology,
were appropriate for standardization, and to produce a set of recommeéndations for action in
each such area. In working to meet these objectives, the Study Group took the reasonable posi-
tion that interfaces were the only aspect of a database system that could possibly be suitable for
standardization, and accordingly defined a generalized database system architecture, or frame-
work. that emphasized the role of such interfaces. The Final Report provides a detailed descrip-
tion of that architecture and of somé.of the 42 (!) identified interfaces. The Interim Report is an’
earlier working document that is ttl of some interest; in some areas it provides additional
detail. .

2.3 1.], van Gricthuysen (ed.): “Concepts and Terminology for the Conceptual Schema and thc
Information Base,” International Organization for Standardization (ISQ) Technical Report ISQ/TR
9007:1987(E) (March 1982; revised July 1987).

This document is the report of an 1ISO Working Group whose objectives included “the defini-
tion of concepts for conceptual schema languages.” It includes an introduction to three compet-
ing candidates (more accurately, three sets of candidates) for an appropriate set of formalisms,
and applies each of the three to a common example involving the activities of a hypothetical
car registration authority. The three sets of contenders are (1) “entity-artribute-relationship”
schemes, (2) “binary relationship™ schemes, and (3) “interpreted predicate logic™ schemes. The
feport also includes a discussion of the fundamental concepts underlying the notion of the con- .
ceptual schema. and suggests some principles as a basis for implementation of a system that
properly supports that notion.'Heavy going in places, but an impommt document for anyone

seriously. interested in the conceptual level of the system.

2.4 William Kent: Data and Reality. Am:terdam Netherlands: "Iorth-Hollnnlecw York, N.Y.
Elsevier Scieace (1978).

A stimulating and thought-provoking discussion of the nawre of information, and in particular
of the conceptual schema. “This book projects a philosophy that life and reality are at bottom
amorphous, disordered, contradictory, inconsistent, nonrational, and nonobjective™ (excerpt
from the final chapter). The book can be regarded in large part as a compendiem of real-world
“~ problems that (it is suggested) existing database formalisms—in particular. formalisms that are
based on conventional record-like structures, which includes the relational modcl—-have diffi-
culty dealing with. Recommended.

2.5 Odysseas G. Tsatalos, Marvin H. Solomon, énd Yannis E. loannidis: “The GMAP: A Versatile

Tool for Physical Data Independence,” Proc, 20th Int. Conf. on Very Large Data Bases. Santiago,
Chile (September 1994).

v — —

)
58 Part [| Preliminaries

GMAP stands for Generalized Multi-level Access Path, The authors of the paper note correctly
that today’s database products “force users to frame their queries in terms of a Jogical schema
that is directly tied to physical structures,” and hence are rather weak on physical data indepen-
dence. In their paper, therefore, they propose a conceptual/internal mapping language (to use
the terminology of the present chapter) that can be used to specify far more kinds of mappings
than are typically supported in products today. Given a particular “logical schema.” the lan-
guage {which is based on relational algebra—~see Chapter 7—and is therefore declarative. not
procedural, in nature) allows the specification of numerous different “physical” or internal
schemas, ali of them formally derived from that logical schema. Among other things, those
physical schemas can include vertical and horizonta! partitioning (or “fragmentation™—see
Chapter 21), any number of physical access paths, clustering, and controiled redundancy.

The paper also gives an algorithm for transforming user operations against the logical
schema into equivalent operations against the physical schema. A prototype implementation
shows that the DBA can tune the physical schema o *“achieve. significantly better performance
than is possible with conventional techniques.”

/
Ay ‘-.JJHMEMMMH ’

]
!
3
i
3
¢
:
i
i
3
3
H

CHAPTER

An Introductmn
to Relational Databases

3.1
3.2
33
34
3.5
3.6
3.7
3.8
3.9
3.10

Introduction .
An Informal Look at the Relational Model

- Relations and Relvars

What Relations Mean -

Optimization .= _ .. ~. -

The Catalog ST

Base Relvars and Views, .
Transactions

The Suppliers-and-Parts Database
Summary

Exercises

References and Bibliography

3.1 INTRODUCTION

" As explained in Chapter 1, the emphasis in this book.is heavily on relational systems. In
particular, Part IT covers the theoretical foundations of such systems-—~that is, the relational
model—ia considerable depth. The purpose of the present chapter is to give a preliminary,
intuitive, and very informal introduction to the material to be addressed in Part II (and to
some extent in subsequent parts too), in order to pave the way for a betier understanding of
those later parts of the book. Most of the topics mentioned will be dlscussed much more
formally. and in much more detail, in those later chapters. -

59

60 PartI | Preliminaries

3.2 AN INFORMAL LOOK AT THE RELATIONAL MODEL

‘We claimed in Chaptef 1 that .rclati‘onal systems are based on a formal foundation, or
theory, called the relational model of data. The relational model is often described as hav-
ing the following three aspects:

= _Structural aspect: The data i xn the database is perccxvcd by the user as tables, and
nothing but tables. _

m ntegrity aspect: Those tables satisfy certain integrity constraints, to be discussed
toward the end of this section.

n Manipulative aspect: The operators available to the user for manipulating those
tables—for example, for purposes of data retrieval—are operators that derive tables
from tables. Of those operators, three particularly important ones are restrict. project,
and join,

e 02 20 0 uhcom Mt it R B Rk At AT S
. Lot . Lo .- [N » &
N S R L

o

A simple relational database, the departments-and-employees database, is shown in
‘Fig. 3.1. As you can see, that database is indeed “perceived as tables” (and the meanings
of those tables are intended to be self-evident). Fig. 3.2 shows some sample restrict,
project. and join operations against the database of Fxg 3 1. Here are (very 1oose') defini-
tions of those Operanons :

s The restrict operation extracts specified rows from a table Note: Restrict is some-
times called select; we prefer restrict because the operitor is not the same as the

SELECT of SQL.

= The project operation extracts specified columns from a table.

= The join operation combines two tables into one on the basis of common values in a
common column, :
of the examples in Fig. 3.2, the only one that seems to need any further cxplanauon

is the join exnmple Join requires the two tables to have a common column. which tables
DEPT and EMP do (they both have a column called DEPT#), and so they can be joined on

DE!_"I‘ DEPT# DNAME BUDGET
: D1 . - | Marketing 10M
D2 Davelopment 12M
D3 Research 5M

EMP emp# | ENAME | DEPT# | SALARY

El Lopez | D1 40K
E2 Cheng | DIl 42K
E3 Finzi | D2 3Jox
E4 Saito | D2 k1 4

Fig.3.1 The departments-and-employees database (sample values)

Chapter 3 [An Introduction to Relational Databases 61

Restrict: Result: | DEPT# | DNAME BUDGET
DEPTs where BUDGET > 8M D1 Marketing 10M
D2 bevelopment 12M
Project: . Result: | DEPT# | BUDGET
DEPTs over DEPT#, BUDGET ' D1 104
b2 12M
D3 SM
Joini 7

DEPTs and EMP= over DEPTH

Result: | DEPT# | DNAME BUDGET | EMP# | ENAME | SALARY
D1 Marketing - i0M | E1 Lopez 40K
D1 Marketing 10M { E2 Cheng 42K
D2 Development .l: 12M | E3 Finzi 30K
D2 Development™: '1 124 | E4 Saito 15K

'Fig.3.2 Restrict, project, and join (examples)

~
!

the basis of common values in that column. To be specific, a given row from table DEPT
will join to a given row in table EMP (to yield a row of the resuit table) if and only if the
two rows in question have a common DEPT# value. For example, the DEPT and EMP
rows ' i

DEPT# Dm BUDGET EMP# ENAME DEPT# SALARY
Dl Marketing 10M El Lopez l 7} 40K

-

(column names shown for explicitness) join together to produce the result row

DEPTH# | DNAME BUDGET | EMPi ENAME | SALARY
Dl Marketing . 10M | E1 Lopez 40K |

because they have the same value, DI, in the common column, Note that the common
value appears once, not twice, in the resuit row. The overall result of the join contains all
possible rows that can be obtained in this manner, and no other rows. Observe in particular
that since no EMP row has a DEPT# value of D3 (i.e.. no employee is currently assigned
to that department), no row for D3 appears in the result, even though there is a row for D3
in table DEPT.

Now, one point that Fig. 3.2 clearly shows is that the result of each of the three opera-
tions is another table (in other words, the operators are indeed “operators that derive
tables from tables,” as required). This is the closure property of relational systems, and it

is very important. Basically, because the output of any operation is the same kind of
aobject as the input—they are all tables—the ourpur from one operation can become input *

62 Part I | Preliminaries

to another: Thus it is possible, for example, to take a projection of a join, a join of two
restrictions, a restriction of a projection, and so on. In other words, it is possible to write
nested relational expressions—that is, relational expressions in which the operands them-
selves are represented by relational expressions, not necessarily just by simple table
names. This fact in turn has numerous important consequences, as we will see later, both
in this chapter and in many subsequent ones.

By the way, when we say that the output from each operation is another table. itis
important to understand that we are talking from a conceptual point of view. We do not
mean to imply that the system actually has to materialize the result of every individual
operation in its entirety.! For example, suppose we are trying to compute a restriction of a
join. Then, as soon as a given row of the join is formed, the system can immediately test
that row against the specified restriction condition to see whether it belongs in the final
resuit, and immediately discard it if not. In other words. the intermediate resuit that is the
output from the join xmght never exist as a fully materialized table in its own right at all.
As a general rule, in fact, the system tries very hard not o materialize intermediate resulits
in their entirety, for obvious performance reasons. Note: If intermediate results are fully
materialized, the overall expression evaluation strategy is called (unsurprisingly) materi-
alized evaluation: if intermediate results are passed piecemeal to subsequent operations,
it is called pipelined evaluation.

Another point that Fig. 3.2 also clearly illustrates is that the operations.are all set-at-
“a-time, not row-at-a-time: that is, the opérands and results are whole tables, not just single :
rows, and tables contain sets of rows. (A table containing a set of just one row is legal, of
course, as is an empry table, i.e., one containing no rows at all.y For example, the join in
Fig. 3.2 operates on two tables of three and four rows respectively, and retumns a result
table of four rows. By contrast, the operations in nonrelational systems are typically at the
row- or record-at-a-time level; thus, this ser processing copability is a major distinguish-
ing characteristic of relational systems (see further discussion in Section 3.5). -)

Let us retun to Fig. 3.1 for a moment. There are a couple of additional points to be
made in connection with the sample database of that figure:

vt enes eatd ileiihotd AR

JONPo PA X T R

» First, note that relational systems require only that the database be perceived by the
user as tables. Tables are the logical structure in a relational system, not the physical
structure. At the physical level, in fact, the system is free to store the data any way it
likes—using sequential files, indexing, hashing, pointer chains, compression, and so
on—provided only that it can map that stored representation to tables gt the logical
level. Another way of saying the same thing is that tables represent an abstraction of
the way the data is physically stored—an abstraction in which numerous storage-
level details (such as stored record placement, stored record sequence, stored data
value representations, stored record prefixes, stored access structures such as indexes,
and so forth) are all hidden from the user.

Incidentally, the term logical structure in the foregoing paragraph is intended to
encompass both the conceptual and external levels, in ANSI/SPARC terms. The point
is that—as explained in Chapter 2—~the conceptual and externa! levels in a relational

B T

I In other words. to repeat from Chapter 1, the relational model is indeed a model—it has nothing to say
about implementation.

\

i,

[

Chapter 3 [An Introduction lo Relational Databases 63

systern will both be relational, but the internal level will not be. In fact, relational
theory as such has nothing to say about the mtemal level at all; it is, to repeat, con-
cerned with how the database looks to the user> The only requirement is that, to
repeat, whatever physical structure is chosen at the internal level must fully support
the required logical structure. '

s Second, relational databases abide by a very nice principle, called The Information
Principle: The entire information content of the database is represented in one and
onlv one way—namely, us explicir values in column positions in rows in tables. This
method of representation is the only method available (at the Jogical level, that is) in a
refational system. In particular. there are no poinfers connecting one table to
another. In Fig. 3.1, for example, there is a connection between the D1 row of table
DEPT and the El row of table EMP. because employee E1 works in department D1;
but that connection is represénted, not by a pointer, but by the appearance of the value
D1 in the DEPT# position of ,gm EMP row for El. In nonrelational systems such as
IMS or IDMS. by contrast, such mformauon is typically represented—as mentioned
in Chapter 1—by some kind of pointer that is explicitly visible to the user.

'Note: We will explain in Chapter 26 just why allowing such user-visible pointers
would constitute a violation of The’ !nfomraaon Principle. Also, when we say there are
no pointers in a relational database, we do not mean there cannot be pointers at the
physical level—on the contrary, there certainly can. and indeed there almost certainly
will, But, to repeat, all such physlcal stomge detmls are conccaled from the user in a
relational system. . Sy

So much for the structural and manipulative aspects of the rclatiorial model: now we
wurn to the integrity aspect. Consider the departments-and-employees database of Fig. 3.1
once again. In practice, that database might be required to satisfy any number of integrity
constraints—for example, employee salaries might have to be in the range 25K to 95K
(say), department budgets might have to be in the range IM fo 15M (say), and so on. Cer-

. tain of those constraints are of such major pragmau:: lmponance howevcr. that they enjoy

-y

some special nOmcnclaturc. To be spccxﬁc ’ . 12

I. Each row in table DEPT must include a unique DEPT# value; likewise, each row in
table EMP must include a unique EMP# value. We say, loosely, that columns DEPT#
in table DEPT and EMP# in table EMP are the primary keys for their respective
tables. (Recall from Chapter 1 that we indicate primary keys in our figures by double
underlining.)

2. Each DEPT# value in taple EMP must exist as a DEPT# value in table DEPT, to re-
fiect the fact that every employee must be assigned to an existing department. We say,
loosely, that column DEPT# in table EMP i isa foreign key, referencing the primary
key of table DEPT. .

* [t is an unfortunate fact that most of today s SQL products do not support this aspect of the theory prop-
erly. To be more specific. they typically support only rather restrictive conceptual/internal mappings; typi- .
caily, in fact, they map one logical table directly to one stored file. This is one reason why (as noted in
Chapter 1) those products do not prowde as much data indepeadence as relational technology is theoreti-
cally capable of. See Appendix A for turther discussion.

»

64

e ——— e

P e —
—vn — Cvw -

Part I | Preliminaries

A More Formal Definition

We close this section with a somewhat more formal definition of the relational model, for
purposes of subsequent referenf:c (despite the fact that the definition is quite abstract and
will not make much sense at this stage). Briefly, the relational model consists of the fol-
lowing five components:

1. Anopen-ended collection of scalar types (including in particular the type boolean or
truth value)
2. A relation type generator and an intended interpreration for relations of types gen-
erated thereby _
3. Facilities for defining relation variables of such generated relation types

4, A relational assignment operauon for assigning relation values to such relation
variables :

5. An open-ended collection of generic relutional operators (“the relational algebra™)
for deriving relation values from other relation valucs

As you can see, the relational model is very much more than just “tables pius restrict.
project, and join." though it is often characterized in such a manner informally.

. By the way, you might be surprised to see no explicit mention of integrity constraints

in the foregoing definition. The fact is. however, such constraints represent just one appli-
cation of the relational operators (albeit a very important one): that is, such constraints are
formulated in terms of those operators, as we will see in Chapter 9.

3.3 RELATIONS AND RELVARS

If it is true that a relational database is bastcally just a database in which the data is per-
ceived as tables—and of course it is true—then a good question to ask is: Why exactly do
we call such a database relational? The answer is simple (in fact, we mentioned it in Chap-
ter 1): Relation is just a mathematical term for a table—to be precise. a table of a specific
kind (details to be pinned down in Chapter 6). Thus, for example. we can say that the
departments-and-empbyees database of Fig. 3.1 contains two relatiors.

Now, in informal contexts it is usual to treat the terms relation and table as if they were

_ synonymous; in fact, the term table is used much more often than the term relarion in prac-
tice. But it is worth taking a moment to understand why the term refation was introduced in

. the first place. Briefly:

- As we have seen, relational systems are based on the relational model. The relationai
model in turn is an abstract theory of data that is based on certain aspects of mathe-
matics (mainly set theory and predicate logic).

= The principles of the relational model were originally laid down in 1969-70 by E F.
Codd, at that time a researcher at [EM. it was Jate in 1968 that Codd, a mathemati-
cian by training, first realized that the discipline of mathematics could be used to
inject some solid principles and rigor into a fieid (dutabase management) that prior to

ran ma—

o1 e tetA carr ety epiedbsliviaint iR ARG
iy o B N - r ", N
v ‘: 8

[P

PETTE PR T P EXCTHN
R - .

o pmrvombied WU v terh it e el L
" L I ;

L IO MLl Bt tte v ot s AT e

Chapter 3 [An Introduction to Relational Databases 65

that time was all too deficient in any such qualities. Codd’s ideas were first widely
disseminated in a now classic paper, “A Relational Model of Data for Large Shared
‘Data Banks” (reference [6.1] in Chapter 6).

A Since that time, those ideas—by now almost universally accepted—have had a wide-
ranging influence on just about every aspect of database technology, and indeed on
other fields as well, such as the fields of artificial intelligence, natural language pro-
cessing, and hardware design.

Now, the relational model as originally formulated by Codd very deliberately made
use of certain terms, such as the term relation itself, that were not familiar in IT circles at .
that time (even though the concepts in some cases were). The trouble was, many of the
more familiar terms were very fuzzy—they lacked the precision necessary to a formal the-
ory of the kind that Codd was proposing. For example, consider the term record. At differ-
ent times and in different contexts, that single term can mean either a record occurrence or
a record fype; a logical record.or:a physical record: a stored record or a virtual record; and
perhaps other things besides. The relational mode! therefore does not use the term record

 at all—instead, it uses the term mple (thymes with couple), to which it gives a very pre-. . ¢

cise definition. We will discuss that definition in detail in Chapter 6; for present purposes.
it is sufficient to say that the tefm niple corresponds approximately to the notion of a row
(just as the term relation corresponds approximately to the notion of a table).

In the same kind of way, the relational model does not use the term field; instead, it
uses the term attribuze, which for present purposes we can say corresponds approximately
to the notion of a column in a table.

When we move on to study the more formal aspects of relational systems in Part IL
we will make use of the formal terminology, but in this chapter we are not trying to be so
formal (for the most part, at any rate), and we wiil mostly stick to terms such as row and
column that are reasonably familiar. However. one formal term we w:Il start using a lot
froni this point forward is the.term relarion itself. :

We return to the depanments-and-employees database of Fig. 3.1 to maLe another
important point. The fact is, DEPT and EMP in that database are relly relation variables:

" varjables, that is, whose values are relation values (different relation values at different

times). For example. suppose EMP currently has the value—the relation value, that is—
shown in Fig, 3.1, and suppose we delete the row for Saito (employee number E4):

DELETE EMP WHERE EMP} = EMP# ('E4') ;

... The resultis shown in Fig. 3.3.

EMP | EMPS | ENAME | DEPTS | SALARY

-
KU
-

Ty . Bl Lopez | D1 40K
B2 Cheng | D1 42K

E3 Finzi } D2 30K

Fig.3.3 Relation variable EMP after deleting E4 row

e o

66

Partl | Preliminaries

Conceptually, what has happened here is that the old relation value of EMP has been
replaced en bloc by an entirely new relation value, Of course, the old value (with four rows)
and the new one (with three) are véry similar, but conceptually they are different values.
Indeed, the delete operation in question is basically just shorthand for a certain relational
assignment operation that might look like this: ‘

EMP := EMP WHERE NOT (EMP# = EMP¥ ('E4')) ;

As in all assignments, what is happening here, concéprually, is that () the expression on
the right side is evaluated, and then (b) the result of that evaluation is assigned to the vari-
able on the left side (naturally that left side must identify a variable specifically). As
already stated, the net effect is thus to replace the “old” EMP value by a “new" one. (As an
aside, we remark that we have now seen our first examples of the use of the Tutorial D lan-
guage—both the original DELETE and the equivalent assignment are expressed in that lan-
guage.)

In analogous fashion. relational INSERT and UPDATE operations are also bas:cally
shorthand for cenain relational assignments. See Chapter 6 for further details. '

Now, it is an unfortunate fact that much of the literature uses the term relation when
what it reaily means is a relation variable (as well as when it means a relation per se—
that is, a relation value). Histori¢ally, however, this practice has certainly led to some con-
fusion. Throughout this book, therefore, we will distinguish very carefully between rela-
tion variables and relations per se; following reference [3.3), in fact, we will use the term

relvar as a convenient shorthand for relation variable, and we will take care to phrnsc our

remarks in terms of relvars, not relations, when it really is relvars that we mean.? Please
note, therefore, that from this point forward we take the unqualified term relation to mean
a relation value specifically (just as we take, e.g., the unqualified term integer to mean an
integer value specificaily), though we will also use the quahﬁed term relation value on
occasion, for emphasis.

Before going any further, we should wam you that the term refvar is not in common
usage—but it shouid be! We really do feel it is important to be clear about the distinction
between relations per se and relation variables. (We freely admit that earlier editions of
this book failed in this respect, but then so did the rest of the literature, What is more,
most of it still does.) Note in particular that, by definition. update operations and integrity
constraints—see Chapters 6 and 9, respectively—both apply specifically to relvars, not
relations.

34 WHAT RELATIONS MEAN

In Chapter 1, we mentioned the fact that columns in relations have associated data types
(tvpes for short, also known as domains). And at the end of Section 3.2, we said that the
relational model includes “an open-ended set of . . . types. Note carefully that the fact that
the set is open-ended implies among other things that users will be able to define their

3 The distinction between relation values and relation variables is actually a special case of the distinction
between values and variables in general. We will examine this latter distinction in depth in Chapter 5.

el Broay by o s e s

&

P LT L NP R e

B N e IO RPN L e S TSy

Toerg nn s

———— —

Chapter 3 | An Introduction to Relational Databases 67

ewn types (as well as being able to make use of .system-defined or built-in types, of
course). For example, we might have user-defined types as follows (Tutorial D syntax
again; the ellipses “. . " denote portions of the definitions that arc not germane {o the
present discussion): -

TYPE EMP# ... i ‘

TYPE NAME ... :

TYPE DEPTH ... ;

TYPE MONEY ... ;

Type EMP#, for example, can be regarded (among other things) as .'he set of all possible
employee numbers; type NAME as the set of all possible names; and so on.

Now consider Fig. 3.4, which is basically the EMP portion of Fig. 3.1 expnndcd 10
show the column data types. As the figure indicates, every relation-—to be more precise,
every relation value—has two pa.ns a set of column-name:type-name pairs (the heading),
rogether with a set of rows that canform to that heading (the body). Note: In pracnce we
often ignore the type-name components of the heading, as indeed we have done in all of
our examples prior to this point, but you should understand that, conceptuaily, they are
always there. ~

~ Now, there is a very |mportant zth(mgh perhaps unusual) way of thinking about rela-
tions, and that is as follows

1. Given a relation r, the hcadmg of r deno:es a certam predicate (whem a predicate is
just a zruth-valued function that, like all functtons. takcs a set of parameters).

As mentioned briefly in Chnpter 1, each row in the body of r denotes a certain true
proposition, obtained from the predmate by substituting certain argument values of
the appropriate type for the paramctcrs of Lhe pred:cate (“mstantmtmv the predi-
cate™).

~
H

In the case of F:g 34, for example, the predicate looks somethmc like this:

Employee EMP# is named ENAME work.s in depanmem DEPT# (and eamns sal-
ary SALARY ‘ : .

(the parameters are EMP#, ENAME, DEPT#, and: SALARY corresponding of course to
the four EMP columns). And the corresponding true propositions are:

Employee El is named Lopez, works in department Dl.' and earns salarv 40K

(obtained by substituting the EMP# value El, the NAME value Lopez, the DEPT# value
D1, and the MONEY value 40K for the appropriate parameters);

EMPf : EMP# | ENAME : NAME | DEPT# : DEPT# | SALARY : MONEY

El . | Lopez Dl 40K
B2 Cheng = - D1) 42K
B3 .. Finzi = . | D2 . 30K
E4 ‘ Saito D2 35K

Fig.34 Sample EMP relation value, showing column types

+ .

T ——— = . 2 e o et 4 T

58 PartI | Preliminaries

Employee E2 is named Cheng, works in deparmment D1, and earns salary 42K

(obtained by substituting the EMP# value E2, the NAME value Cheng, the DEPT# value
DL, and the MONEY value 421{ for the appropriate parameters); and 5o on. In a putshell,
therefore:

g ol

® Types are (sets of) things we can talk about.
% Relations are (sets of) things we say about the things we can talk about.

(There is a nice analogy here that might help you appreciate and remember these important
points: Types are to relations as nouns are to seniences.) Thus, in the example, the things
we can talk about are emplovee numbers, names. department numbers, and money values,
and the things we say are ue utterances of the form “The empioyee with the specified
employee number has the specified name, works in the specified department, and eamns the
specified salary.”

It follows from all of the :or-gomg that:

1. Types and reladons are both necessary (without types, we have nothing to talk about:
without relations. we cannot say anything).

Tvpes and relations are siufficient. as well as neccssar)—-that 15, we do not nced anv-
' thing else. logically speaking.
3. Tvpes and relarinns are not the same thing. It is an unfortunate fact that cértain com-
mercial producis—aor relational ones, by definition!—are confused over this very
“point, \\e will discuss n‘us confusion in Chapter 26 (Section 26. 2)

- By the way. it is important to understand that every relation has an associated predi- -
cate, including relations that are derived from others by means of operators such as join.
- For exampie, the DEPT relation of Fig 3.1 and the three result relations of Fig. 3.2 have
predicutes as follows: - :

* DEPT: Depanmem DEPT2 is named DNAME and has budget BUDGET -

= 'Restriction of DEPT where BUDGET > 8M: Department DEPT# is named DNAME
and has budger BUDGET. which is greater than eight wmillion dollars

® Projection of DEPT over DEPT# and BUDGET: Deparmment DEPT# has some name

. and has budger BUDGET . .

¥ Join of DEPT and EMP over DEPT#: Department DEPT# is named DNAME and has
budger BUDGET and employee EMP# is named ENAME, works in department
DEPT#. and earns salary SALARY (note that this predicate has six parameters. not
seven—ithe two references to DEPT# denote the same parameter)

.
H

AR W s B2 9 R YA I 4 e A T AT M A WA o7, ST Ao T AP AW 0 a0 P 2 a1 it AN 0 Gl
R T YRS | B vyt R oo B ' B o e I K . g

Finally, we observe that relvars have predicates too: namaly. the predicate that is
common to all of the relations that are possible values of the relvar in question. For exam-
ple, the predicate for relvar EMP is:

Employee EMP# is named ENAME, works in department DEPTH#, and earns sal~
ary SALARY |

Chapter 3 { An Introduction to Relational Databases 69

3.5 OPTIMIZATION

v

As explained in Section 3.2, the relational operators (restrict, project, join, and so on) are
all set-level. As a consequence, relational languages are often said to be nonprecedural,
on the grounds that users specify what, not hiow—that is, they say what they want, without
specifying a procedure for getting it. The process of “navigating” around the stored data in
order to satisfy user requests is performed automatically by the system, not manually by
the user. For this reason. relational systems are sometimes said to perform automatic nav-
igation. In nonrelational systems. by contrast, navigation is generally the responsibility of
the user. A striking illustration of the benefits of automatic navigation is shown in Fig. 3.5,
which contrasts a certain SQL INSERT statement with the “manual navigation™ code the
user might have to write to achieve an equivalent effect in a nonrelational system (actually

a CODASYL network system: the example is taken from the chapter on network databases.

“in reference {1.5]). Note: The database is the well-known suppliers-and-parts database.
See Section 3.9 for further explanatioft.;-. -

INSERT INTO SP (S#, Pf, QTY) L
VALUES { *sS4°, 'P3°, 10060™)-;

MOVE *S4°* T0 S$# IN § ' -
FIND CALC S “
ACCEPT S-SP-ADDR FROM S-SP CURRENCY
FIND LAST SP WITHIN S-SP
while S2 found PERFORM -
ACCEPT S-S5P-ADDR FROM 5-SP CURRENCY
FIND OWNER WITHIN P-SP.
GET P
IF PF IR P < ‘P23’
leave loop .
END-IF
FIND PRIOR SP WITHIN S-SP .
END-PERFORM -
MOVE *P3*' TO P# IN P _ ,
FINO CALC P B M
ACCEPT P-SP-AUDR FROM P-5P CURRENCY
FIND LAST SP WITHIN P-SP
while SP found PERFORM
ACCEPT P-SP-ADDR FROM P-SP CURRENCY
FIND OWNER WITHIN S-5P
GET S
IF S# IN S < 'S4° o *
leave loop
END-IF ' ,
FIND PRIOR SP WITHIN P-Sp-
END-PERFORM '
MOVE 1000 TO QTY IN SP i
FIND DB-KEY IS 5-SP-ADDR
FIND DB-KEY IS P~SP-ADDR
STORE sp
CONNECT SP? TO 5-SP f

CONNECT SP? TO P-SP

Fig. 3.5 Automatic vs. manual navigation -

A e bt -

|
‘[70 Part] [Preliminaries
|

Despite the remarks of the previous paragraph, it has to be said that nonpfocedural is
not a very satisfactory term, common though it is, because procedurality and nonproce-
durality are not absolutes. The best that can be said is that some language A is either more _
or less procedural than some other language B. Perhaps a better way of putting matters é

1
|
3

would be to say that relational languages are at a higher level of abstraction than nonrela-
tional languages (as Fig. 3.5 suggests), Fundamentally, it is this raising of the level of
abstraction that is responsible for the increased productivity that relational systems can
provide. .

Deciding just how to perform the automatic navigation referred to above is the respon- i
sibility of a very important DBMS component called the optimizer (we mentioned this :
component briefly in Chapter 2). In other words, for each access request from the user., it is]
the job of the optimizer to choose an efficient way to implement that request. By way of an
example, let us suppose the user issues the following query (Tutorial D once again): i

(EMP WHERE EMP# = EMP# (*E4')) { SALARY } r 1

Explanotion: The expression inside the outer parentheses (“EMP WHERE .. .")
denotes a restriction of the current value of relvar EMP to just the row for employee Ed4.
.The column name in braces ("SALARY") then causes the result of that restriction to be 1
projected over the SALARY column. The result of that projection is a single-column,
single-row relation that contains employee EA’s salary. (Incidentally, note that we are
implicitly making use of the relational clostre property in this example—we have written
a nested relational expression, in which the input to the projection is the output from the $
restriction.) “a . ' 3

Now, even in this very simple example, there are probably at least two ways of per-
forming the necessary data access: .

1. By doing a physical sequential scan of (the stored version of} relvar EMP until the
required data is found

2. If there is an index on (the stored version of) the EMP# column—which in practice
there probably will be, because EMP# values are supposed to be unique, and many
systems in fact require an index in order to enforce uniqueness—then by using that
index to go directly to the required data '

The optimizer will choose which of these two strategies to adopt. More generally,
given any particular request, the optimizer will make its choice of strategy for implement-
ing that request on the basis of considerations such as the following:

= Which relvars are referenced in the request
How big those relvars currently are
What indexes exist
How selective those indexes are
How the data is physically clustered on the disk
What relational operations are involved

-

s Al e e gt coh it s

AN

Chapter 3 | An Introduction to Relational Databases 71

. and so on. To repeat, therefore; Users specify only what data they want, not how to get to

that data; the access strategy for getting to that data is chosen by the optimizer (“automatic
navigation™). Users and user programs are thus independent of such access strategies,
which is of course essential if data independence is to be achieved.

We will have a lot more to say about the optimizer in Chapter 18.

»

3.6 THE CATALOG

As explained in Chapter 2, the DBMS must provide a catalog or dictionary function.
The catalog is the place where—among other things—all of the various schemas (exter-
nal, conceptual, internal) and all of the comresponding mappings (external/conceptual,
conceptual/internal, external/external) are kept. In other words, the catalog contains
detailed information, sometimes called descriptor information or metadata, regarding the
various objects that are of mtere&t to the system itself. Examples of such objects are rel-
vars, indexes, users, integrity constraints, security constraints;, and so on. Descriptor
information is essential if the system is to do its job properly. For example, the optimizer
uses catalog information about indexes and other auxiliary structures, as well as much
other information, to help it decide how to’ implement user requests (see Chapter 18).
Likewise, the authorization subsystem uses catalog information about users and security
constraints to grant or deny such requests in the first place (see, Chapter 17).

Now, one of the nice features of relational systems is that, in such a system, the cata-
log itself consists of relvars (more precisely, system relvars, so called to distinguish them
from ordinary user ones). As a result, users can interrogate the catalog in exactly the same
way they interrogate their own data. For example, the catalog in an SQL system might
include two system relvars called TABLE and COLUMN, the p'urposc of which is to
describe the tables (or relvars) iit the database and the columns in those tables. For the
departments-and-employees database of Fig 3.1, the TABLE and ‘COLUMN relvars
might look in outline as shown in Fig. 3. 64

Note: As mentioned m Chapter 2, the catalog should normnlly be' self-descnbmg—that
is, it should include entries dcscnbmg the catalog relvars themselves (see Exercise 3.3).

Now suppose some user of the deparnnents—and-employees database wants to know
exactly what columns relvar DEPT contains (obviously we are assuming that for some rea-
son the user does not already have this information). Then the expression

(COLUMN WHERE TABNAME = 'DEPT') {(COLNAME }

does the job. . : _
Here is another example: “Which relvars include a column called EMP#?”

(COLUMN WHERE COLMAME = ‘EMP#') { TABNAME }

4 Note that the presence of column ROWCOUNT in Fig. 3.6 suggests that INSERT and DELETE opera-
tions on the database will cause an update to the catalog es a side effect. In practice, ROWCOUNT might
be updated only on request (e.g., when some utility is run), meaning that values of that column might not
always be current. .

72 Part I | Preliminaries

TABLE TABNAME | COLCOUNT | ROWCOUNT | ¢....
DEPT 3 . 37 ceans
E“P) ‘ ‘
COLUMN | TABNAME | COLNAME |
DEPT DEFPT¥ |
DEPT DNAME
DEPT BUDGET |
EMP EMP# LR R
EMP ENAME | .cewe
EMP DEPTH .
EMP SALARY |

Fig. 3.6 . Catalog for the departments-and-employees database (in outline}

- Exercise: What does the following do? ' ,

{ { TABLE JOIN COLUMN) '
) mnr. cot.coum <5) ¢ ﬂanum, comms }

3.7 BASE RELVARS AND vxEWs

We have seen.that. starting with a set of relvars such as DEPT and EMP, together with a
set of relation values for those relvars, relational expressions allow us to obtain further
relation values from those given ones. It is time to introduce a little more terminology. The
"original (given) relvars are called base relvars, and their values are called base relations;
a relation that is not a base relation but can be obtained from the base relations by means
of some relational expression is called a derived, or derivable, relation. Nore: Base rel-
vars are called real relvars in reference (3.3).

* Now, relational systems obviously have to provide a means for t.reatmg the base rel-
vars in the first place. In SQL. for example, this task is performed by the CREATE TABLE
statement (TABLE here meaning, very specifically, a base relvar, or what SQL calls a base
table). And base relvars obviously have to be named—for example:

CREATE TABLE EMP ... ;

However, relational systems usually support another kind of named relvar also,
called a view, whose value at any given time is a derived relation (and so a view can be
thought of, loosely, as a derived relvar). The value of a given view at a given time is
whatever results from evaluating a certain relational expression at that time; the rela-
tional expression in question is specified when the view in question is created. For exam-
ple, the statement

CREATE VIEW TOPEMP AS '
(EMP WHERE SALARY > 33K) { EMP#, ENAME, SALARY } ;

Chapter 3 | An Introduction to Relational Databases 73

TOPEMP | EMP# | ENAME

El Lopez |
E2 Cheng |.

B3 "?inzi‘.u .
Ed Saito

Fig.3.7 TOPEMP asa view of EMP (unshaded portions)

‘might be used to define a view called TOPEMP. (For reasons that are/ﬁnirnponant at this

juncture, this example is expressed in a mixture of SQL and Tutoriat D.) :

~ When this statement is executed, the relational expression following the AS—the
view-defining expression—is not evaluated but is merely remembered by the system in
some way (actually by saving it in the catalog, under the specified name TOPEMP). To
the user, however, it is now as if thére really were a relvar in the database called TOPEMP,
with current value as indicated in‘th¢ unshaded portions {only) of Fig. 3.7. And the user
should be able to operate on that view exactly as if it were a base relvar, Note: If (as sug-
gested previously) DEPT and EMP are thought of as real relvars, then TOPEMP might be
thought of as a virrual relvar—that is, a relvar that appears to exist in its own right. but in
fact does not (its value at any given time depends on the value(s) of certain other rel-
var(s)). In fact, views are called virtual relvars in reference {3.3].

Note carefully, however, that although we say that the value of TOPEMP is the rela-
tion that would result if the view-defining expression were evaluated, we do not mean we
now have u separate copy of the data: that is, we do not mean the view-defining expres-
sion actually is evaluated and the result materialized. On the contrary, the view is effec-
tively just a kind of “window™ into the undetlying base relvar EMP. As a consequence,
any changes to that underiying relvar will be automatically and instantaneously visible
through that window (assuxmng they lie within the unshaded portion). Likewise, changes
to TOPEMP wil} automatically and instantaneously be applied to relvar EMP and hence
be visible through the window (see later for an exampie). L

" Here is a sample retrieval operation against view TOPEMP:

(TOPEMP WHERE SALARY < 42K } { EMP#, SALARY }

Given the sample data of Fig. 3.7, the resuit will look like this:

EMP$# | SALARY

El . 40K !
E4 asxK

Conceptually, operations against a view like the retrieval operation just shown are han-
dled by replacing references to the view name by the view-defining expression (i.c., the
expression that was saved in the catalog). In the example, therefore, the original expression

(TOPEMP WHERE SALARY < 42K) { EMP#, SALARY)

74 PartI] Prélfminaries

4ot Akl

is modified ﬁy the system to become

! (({ EMP WHERE SALARY > 33K) ({ EMP#, ENAME, SALARY }).
WHERE SALARY < 42K).(EMP#, SALARY }

(we have italicized the view name in'the original expression and the replacement text in the
modified version). The modified expression can then be simplified to just

(EMP WHERE SALARY > 33K AND SALARY < 42K) { EMP#, SALARY }

(see Chapter 18), and this latter expression when evaluated yields the result shown earlier.
In other words, the original operation against the view is effectively converted into an
equivalent operation against the underlying base relvar, and that equivalent operation is
then executed in the normal way (more accurately, oprimized and executed in the normal
way).

By way of another example, consider the following DELETE operauon

DELETE TOPEMP WHERE SALARY < 42K ; . ' |
The DELETE that is actually executed looks something like this:

DELETE EMP WHERE SALARY > 33K AND SALARY < 42K ;

Now, the view TOPEMP is very simple, consisting as it does just of a row-and-
column subset of a single underlying base relvar (loosely speaking). In principle, how-
ever, a view definition, since it is essentially just a named relational expression, can be of
arbitrary complexity (it can even refer to other views). For example, here is a view whose
definition involves a join of two underlying base relvars:

CREATE VIEW JOINEX AS

((EMP JOIN DEPT) WHERE BUDGET > 7M) (EMP¥, DEPTE } ;

We will return to the whole question of view definition and view proccssmg in Chap-
ter 10. - 1

Incidentally, we can now explain the remark in Chapter 2, near the end of Section 2.2,
to the effect that the term view has a rather specific meaning in relational contexts that is
not identical to the meaning assigned to it in the ANSI/SPARC architecture. At the exter-
nal level of that architecture, the database is perceived as an “external view,” defined by an
external schema (and different users can have different external views), In relational sys-
tems, by contrast, a view is, specifically, a named, derived, virtual relvar, as previously
explained. Thus, the relational analog of an ANSI/SPARC “external view™ is (typically) a
collection of several relvars, each of which is a view in the relational sense, and the
“external schema” consists of definitions of those views. (It follows that views in the rela-
tional sense are the relational model’s way of providing logical data independence
though once again it has to be said that today s SQL products are sadly deficient in this
regard. See Chapter 10.)

Now, the ANSI/SPARC architecture is quite general and allows for arbitrary variabil-
ity between the external and conceptual levels. In principle, even the types of data struc-
tures supported at the two levels could be different; for example, the conceptual level

& STyl O bR

Chapter 3 | An Introduction to Relational Databases 75

could be relational, while a given user could have an external view that was hierarchic.’ In
practice, however, most systems use the same type of structure as the basis for both levels,
and relational products are no exception to this general rule—views are still relvars, just
like the base relvars are. And since the same type of object is supported at both levels, the
same data sublanguage (usually SQL) applies at both levels. Indeed, the fact that a view is
a relvar is precisely one of the strengths of relational systems; it is important in just the
same way as the fact that a subset is a set is important in mathematics. Nore: SQL prod-
ucts and the SQL standard (see Chapter 4) often seem to miss this point, however, inas-
much as they refer repeatedly to “tables and views,” with the tacit implication that a view
is not a table. You are strongly advised nor to fall into this common trap of taking “tables™
(or “relvars™) to mean, specifically, base tables (or relvars) only.

There is one final point that needs to be made on the subject of base relvars vs. views,
as follows. The base relvar vy, view distinction is frcqucntly characterized thus:

= Base relvars “really ex;st{' in the sense that they represent data that is physically
stored in the database, .-

x Views. by contrast, do not really exist” but merely provide different ways of looking
at “the real data.” . .

..\-'

However, this characterization, though\perhhps useful in informal contexts, does not accu-
rately reflect the true state of affairs. It is true that users can think of base relvars as if they
were physically stored; in a way, in fact, the whole point of relational systems is to aliow
users to think of base relvars as physically existing, ‘while not having to concern themselves
with how those relvars are actually represented in storage. But—and it is a big but—this
way of thinking should not be construed as meaning that a base relvar is physically stored
in any kind of direct way (e.g., as a single stored file). As explained in Section 3.2, base
relvars are best thought of as an abstraction of some collection of stored data—an abstrac-
tion in which all storage-level details are concealed. In principle, there can be an arbitrary
degree of differentiation between a base relvar and its stored counterpart.’ s

A simple example mxght help to clarify this point. Consider, the- departments-and-
employees database once again. Most of today’s reiational systems would probably imple-
ment that database with two stored files, one for each of the two base relvars. But there is
absolutely no logical reason why there should not be just one stored file of hierarchic
stored records, each consisting of (a) the department number, name, and budget for some
given department, together with (b) the employee number, name, and salary for each
employee who happens to be in that department. In other words, the data can be physi-
cally stored in whatever way seems appropriate (see Appendix A for a discussion of fur-
ther possibilities), but it always looks the same at the logical level.

3 We will see an example of this possibility in Chapter 27. -

6 The following quote from a recent book displays several of the confusions discussed in this paragraph,

as well as others discussed in Section 3.3 carlier: *[It] is importaat to meke & distinction between stored
relations, which are rables, and virtual relations, which are views. .. [Wc} shall use relation only where u
table or n view could be used. When we want to emphasize that a relation is stored, rather than a view, we
shall sometimes use the term base relation or base table.” The quote is, regrettably, not at all atypical.

76 Partl [Preliminaries

3.8 TRANSACTIONS

Note: The topic of this section is not peculiar 1o relational systems. We cover it here never-
theless, because an undersianding of the basic idea is needed in order to appreciate cer-
tain aspects of the material to come in Part Il. However, our coverage at this point is

deliberately not very deep.

In Chapter 1 we said that a transaction is a “logical unit of work.” typically involving -
several database operations. Clearly, the user needs to be able to inform the system when
distinct operations are part of the same transaction, and the BEGIN TRANSACTION,
COMMIT, and ROLLBACK operations are provided for this purpose. Basically, a transac-
tion begins when a BEGIN TRANSACTION operation is executed, and terminates when a
corresponding COMMIT or ROLLBACK operation is executed. For example (pseudocode):

e 2 ——1 " e ¢ &

= ————- —————— .

BEGIN TRANSACTIOR ; /* move $§5 from account A to account B */

UPDATE account A ;

_UPDATE account B ;

IF everything worked fine
THER COMMIT ; .
ELSE ROLLBACK H

END IF

Points arising:

1. Transactions are guaranteed to be atomic—that is. they are guaranteed (from a logi-
,‘cal point of view) either to execute in their entirety or not to execute at all.? even if
(say) the systern fails halfway through the process.

Tmnsacuom are also guaranteed to be durable, in the sense that once a transaction

successfully executes COMMIT, its updates are guaranteed to appear in the database,
_even if the system subsequently fails at any pomt. (It is this durability property of

transactions that makes the data in the database persistent, in the sense of Chapter 1.)

: 3. Transactions are also guaranteed to be isolated from one another, in the sense that da-
tabase updates made by a given transaction TI are not made visible to any distinct
transaction 72 until and unless T7 successfully executes COMMIT. COMMIT causes
database updates made by the transaction to become visible to other transactions:
“such updates are said to be committed, and are guaranteed never to be canceled. If the
transaction executes ROLLBACK instead, all database updates made by the transac-
tion are canceled (rolled back), In this latter case, the effect is as if the transaction

(EI

. never ran in the first place.

4. The interleaved execution of a set of concurrent transactions is usually guaranteed to
be serializable, in the sense that it produces the same result as executing those same

/* withdrawal */
/* deposit */

/* normal end */
/* abnormal ead */

transactions one at a time in some unspecified serial order.

Chapters 15 and 16 contain an extended discussion of all of the foregoing points, and

. much else besides.

7 Since a transaction is the execution of some piece of code, a phrase such as “the execution of a transac-
tion" is really a solecism (if it means anything at all. it has to mean the execution of an execution). How-
ever, such phraseology is common and useful, and for want of anything better we will use it ourselves in

this book.

JEITTRUE IR I |

HATTE% Ty 17 N

WL L

Chapter 3 [An Introduction to Relational Databases 77

et .
o5 i,

3.9 THE SUPPLIERS-AND-PARTS DATABASE

Most of our examples in this book are based on the well-known suppliers-and-parts data-

_ base. The purpose of this section is to explain that database, in order to serve as a point of
reference for later chapters. Fig. 3.8 shows a set of sample data values; subsequent exam-
ples will actually assume these specific values, where it makes any difference.’ Fig. 3.9
shows the database definition, expressed in Tutorial D once again (the Tutorial D key-
word VAR means “variable”). Note the primary and foreign key specifications in particu-
lar. Note too that (a) several columns have data types of the same name as the column in .
question: (b) the STATUS columa and the two CITY columns are-defined in terms of -
system-defined types—INTEGER (integers) and CHAR (character strings of arbitrary
length)—instead of user-defined ones. Note finally that there is an important point that
needs to be made regarding the column values as shown in Fig. 3.8, but we are not yetina
position to make it; we will come back to it in Chapter 5, Section 5.3, near the end of the
subsection “Possible Representauons

The database is meant to be: unﬂcrstood as follows:

L Rclvar S represents suppliers (more accurately, suppliers under contract). Each sup-
plier has a supplier number (S#), unique to that supplier: a supplier name (SNAME),
not necessarily unique (though the SNAME values do happen to be unique in Fig.
3.8); a rating or status value (STATUS); and a logation (CITY). We assume that each
supplier is located in exactly one city.

® Relvar P represents parts (more accurately, kinds of parts). Each kind of part has a
part number (P#), which is unique; a part name (PNAME); a color (COLOR); a

s | st | snaME [sTaTus | cITY sp ! st | pt | QoY
S1 | smith. 20 | London 51 | P1 | 300

§2 | Jones 10 | Paris . |.81 | P2 | 200

§3 | Blake 30 | pParis S1+#°F3 | 400

54 | Clark 20 | London i Sl | P4 | 200

S5 | Adams 30 { Athens 51| pS 100

’ . 81 P6 100

S2 } Pl | 300
82 | P2 | 400

P | P4 | PNAME | COLOR | WEIGHT | CITY g3 | p2 | 200)
| P1 | Nut Red 12.0 | London ' o gi ggg
P2 | Bolt Green 17.0 | Paris s4 | ps | s00 :
~ P3 | Screw | Blue 17.0 | Oslo -
P4 | Screw | Red 14.0 { London ’
Ps | cam Blue’ 12.0 | Paris
P6 | Cg Red. { 19.0 | London 5
k]

Fig.'3.8 The suppliers-an::l-parts database (sample values)

3 For ease of reference, Fig. 3.8 is repeated on the inside back cover. For the benefit of readers who
might be familiar with the sample data values from earlier editions. we note that part P3 has moved from
Rome to Oslo. The same change has also been made in Fig. 4.5 in the next chapter.

- b"l
W
B
i
i
hot)
H

ewwize

o TR i n v e
EAEI L iy

by
)

78

Part1] Preliminaries

TYPE S#¢ ... ;
TYPE NAME ... }
TYPE Pf ... ;
TYPE COLOR ... }
TYPE WEIGHT ... ;
TYPE QTY ... ;

VAR § BASE RELATIOR
{ Sk S&,
SNAME NAME,
STATUS INTEGER,
CITY CHAR
PRIMARY KEY { St)} ;

VAR P BASE RELATION
{ ot p#,
PNAME NAME,
COLOR COLOR, -
WEIGHT WEIGHT, .
CITY CHAR }
PRIMARY KEY { Pt } }

" VAR SP BASE RELATION

{ 5% s&, :
P& Pt,)
QTy Q1Y

PRIMARY KEY . P

)

{ s§
TOREIGN KEY { S# } REFERENCES S
FOREIGN KEY { P%# } REFERENCES P ;

Fig.3.9 The suppliers-and-parts database (data definition)

weight (WEIGHT); and a location where pa:ts of that kind ‘are stored (CITY). We
assume where it makes any difference that part weights are given in pounds (but see
the discussion of units of measure in Chapter 5, Section 5.4). We also assume that
each kind of part comes in exactly one color and is stored in a warehouse in exactly
one city. ‘ -

Reivar SP represents shipments. It serves in a sense to link the other two relvars
together, logically speaking. For example, the first row in SP as shown in Fig. 3.8
links a specific supplier from relvar S (namely, supplier S1) to a specific pant from
relvar P (namely, part P1)—in other words, it represents a shipment of parts of kind
Pl by the supplier called S1 (and the shipment quantity is 300). Thus, each shipment
has a supplier number (S#), a part number (P#), and a quantity (QTY). We assume
there is at most one shipment at any given time for a given supplier and a given part;
for a given shipment, thercfore, the combination of S# value and P# value is unique
with respect to the set of shipments currently appearing in SP. Note that the database
of Fig. 3.8 includes one supplier, supplier S5, with no shipments at all.

We remark that (as already pointed out in Chapter [, Section 1.3) suppliers and parts

can be regarded as entities, and a shipment-can be regarded as a relationship between a
particular supplier and a particular part. As also pointed out in that chapter, however, a
relationship is best regarded as just a special case of an entity. One advantage of relational
databases over all other known kinds is precisely that all entities, regardiess of whether

-

Chapier 3 | An Introduction to Relational Databases 79

they are in fact relationships, are represented in the same uniform way: namely, by means
of rows in relations, as the example indicates,
A couple of final remarks:

™ First, the suppliers-and-parts database is clearly. very simple, much simpler than any
real database is likely to be; most real databases will involve many more entities and
relationships (and, more important, many more kinds of entities and relationships)
than this one does. Nevertheless, it is at least adequate to illustrate most of the points
that we need to make in the rest of the book, and (as already stated) we will use it as
the basis for most—not all—of our examples as we procéed.

% Second, there is nothing wrong with using more dcscnptlve names such as
SUPPLIERS, PARTS, and SHIPMENTS in place of the rather terse names S, P, and
SP in Figs. 3.8 and 3.9: indeed, descriptive names are generally to be recommended
in practice. But in the case of the suppliers-and-parts database specifically, the relvars
are referenced so frequently in what follows that very short names seemed desirable.
Long names tend to become ifksome with much repetition. ‘

310 SUMMARY e

This brings us to the end of our brief overview of relational technology. Obviously we

have barely scratched the surface of what by now has become a very extensive subject, but

the whole point of the chapter has been to serve as a gentlc mtmducuon to the much more

comprehensive discussions to come. Even so, we have managcd 1o cover quite a lot of
~ ground. Here is a summary of the major topics we have discussed.

A relational database is a database that is perceived by'its’users as a collection of
relation variables—that is, relvars—or, more informally, tables. A relational system is
a system that supports relational databases and operations on such databases, including in
particular the operations restrict, project, and join. These operations, and others like
them, are collectively known as the rélational algebra,? and they are all set-level. The
closure property of relational systems means the output from every operation is the same
kind of object as the input (they are all relations), which means we can write nested rela-
tiona] expressions. Reivars can be updated by means of the relational assignment opera-
tion; the familiar update operations INSERT, DELETE, and UPDATE can be regarded
as shorthands for certain common relational assignments.

The formal theory underlying relational systems is called the relational model of
data. The rejational mode] is-concemned with logical matters only, not physical matters. It
addresses three principal aspects of data: data structure, data integrity, and data manipu-
tation. The structural aspect has to do with relations per se; the integriry aspect has to do
with (among other things) primary and foreign keys; and the manipulative aspect has to
do with the operators (restrict, project, join, etc.). The Information Principle—which we

? We mentioned this term in the formal deﬁmdou of the relational madel in Section 3.2. However, we
will not start using it in earnest until we reach Chapter 6.

Rt

i

P

80 PartI [Preliminaries

now observe might better be called The Principle of Uniform Representation—states that
the entire information content of a relational database is represented in one and only one
way, as explicit values in column positions in rows in relations. Equivalently: The oni)' :
variables allowed in a relational database are, speclﬁcally. relvars.

Every relation has a heading and a body; the heading is a set of column-name:type-
name pairs, the body is a set of rows that conform to the heading. The heading of a given
relation can be regarded as a predzcate and each row in the body denotes a certain true }-
proposition. obtained by substituting certain arguments of the appropriate type for the
parameters of the predicate. Note that these remarks are true of derived relations as weil
as base ones; they are also true of relvars, mutatis mutandis. In other words. fypes are (sets
of) things we can talk about, and relations are (sets of) things we say about the things we :
can talk about, Together, types and relations are necessary and sufficient to represent any 3.
daca we like (at the logical level, that is).

The optimizer is the system component that determines how to implement user
requests (which are concerned with what, not how). Since relational systems therefore
assume responsibility for navigating around the stored database to locate the desired data,
they are sumetimes described as automatic navigation systems. Optimization and auto-
matic navigation are prerequisites for physicul data independence. '

The catalog is a set of system relvars that contain descriptors for the various items
that are of interest to the system (base relvars, views, indexes. users, etc.). Users can inter-

rogate the catalog in exactly the same way they interrogate their own data.

The original (given) relvars in a given database are called base relvars, and their val-
ues are called base relations; a relation that is not a base relation but is obtained from the
base relations by means of some relational expression is called a derived reiation (collec-
tively, base and derived relations are sometimes referred to as expressible relations). A
view is a relvar whose value at any given time is such a derived relation (loosely, it can be
thought of as a derived relvar); the value of such a relvar at any given time is whatever
results from evaluating the associated view-defining expression at that time. Note. there-
fore, that base relvars have independent existence, hut views do not—they depend on the
applicable base relvars. (Another way of saying the same thing is that base relvars are
autonomous, but views are not.) Users can operate on views in exactly the same way as
they operate on base relvars, at least in theory. The system implements operations on
views by replacing references to the name of the view by the view-defining expression,
thereby converting the operation into an equivalent operation on the underlying base
relvar(s).

A transaction is a logical unit of work, typically involving several database opera-
tions. A transaction begins when BEGIN TRANSACTION is executed and terminates
when COMMIT (normal termination) or ROLLBACK (abnormal termination) is exe-
cuted. Transactions are atomic, durable, and isolated from one another. The interleaved
execution of a set of concurrent transactions is usually guaranteed to be serializable.

Finally, the basc example for most of the book is the suppliers-and-parts database.
It is worth taking the time to familiarize yourself with that example now, if you have not
done so already; that is, you should at least know which relvars have which columns and
what the primary and foreign keys are (it is not as important to know exactly what the

sample data values are!).

o dos e ol Aot o b LG

" — LI — — . G e

P

Chapter 3 [An Introduction to Relational Databases 81

EXERCISES

3.1 Explain the following in your own words:
automatic navigation primary key
base relvar projection
catalog proposition
closure relational database
commit relational DBMS
derived relvar relational model
foreign key restriction
join roflback
optimization set-level operation
predicate view

32 Skeich the contents of the catalog'relvars TABLE and COLUMN for the suppliers-and-parts -

database.

3.3 As explained in Section 3.6, the caéi-'lgt;g is self-describing—that is. it includes entries for the
catalog relvars themselves. Extend Fig. 3.6 to include the necessary entries for the TABLE and
COLUMN relvars themseives.

3.4 Hereis a query on the supplicrs-andiﬁa\ri_s'aatabasc. What does it do? What is the predicate for
the result?

((S JOIN SP) WHERE P# = P# ('P2'}))-{ S, CITY }
3.5 Suppose the expression in Exercise 3.4 is used in a view definition:

CREATE VIEW V AS
((5 JOIN SP) WHERE P# = P4 ('P2')) (S#, CITY } ;

Now coasider this query:

{ V WHERE CITY = ‘London*®) { 5S4
What does this query do? What is the predicate for the result? Show what is involved on the part of
the DBMS in processing this query,
3.6 What do you understand by the terms atomiciry, durabifity, isolation, and serializabiiire as
applied lo transactions?
3.7 State The Information Principle.

3.8 If you are familiar with the hierarchic data model, identify as many differences as vou can
between it and the relational mode] as briefly described in this chapter.

REFERENCES AND BIBLIOGRAPHY

3.1 E. F. Codd: “Relational Database: A Practical Foundation For Productivity,” CACM 25, No. 2
(February 1982). Republished in Robert L. Ashenhurst (ed.), ACM Turing Award Lectures: The First
Twenty Years 1966~1985. Reading, Mass.: Addison-Wesley (ACM Press Anthology Series, 1987).

This is the paper Codd presented on the occasion of his receiving the 1981 ACM Turing Award
for his work on the relational model. It discusses the well-known application backlog problem.
To quote: “The demand for computer applications is growing fast—so fast that information

S T A s A s et b il R
i s S g S T e T e b A -

i bt e A e SR

82

Part I | Preliminaries

systems departments (whose responsibility it is to provide those applications) are lagging fur-
ther and further behind in their ability to meet that demand.” There are two complemcntary
ways of attacking this problem:

1. Provide IT professionals with new tools to increase their productivity. A

2. Allow end users to interact directly with the database, thus bypassing the IT professional
entirely.)

Both approaches are needed, and in this paper Codd gives evidence to suggest that the neces-

sary foundation for both is provided by relational technology.

3.2 C. 1. Date: "Why Relational?” in Relational Database Writings 1985-1989. Reading, Mass.:
Addison-Wesley (1990),

An attempt to provide 2 succinct yet reasonably comprehensive summary of the major advan-
tages of relational systems. The following observation from the paper is worth repeating here:
Among all the numerous advantages of “going relational,” there is one in particular that can-
not be overemphasized, and that is the existence of a sound theoretical base. To quote: “Rela-
tional really is different. It is different because it is not ad hoc. Older systems, by contrast,
were ad hoc; they may have provided solutions to certain important problems of their day, but
they did not rest on any solid theoretical base. Relational systems, by contrast, do rest on such
a base . . . which means [they] are rock solid . . . Thanks to this solid foundation, relational
systems behave in well-defined ways; and (possibly without realizing the fact) users have a
simple model of that behavior in their mind, one that enables them to predict with confidence

.what the system will do in any given situation. There are (or should be) no surprises. This pre-
dictability means that user interfaces are easy to understand, document, teach,]ea.rn. use, and
remember.”

33 C.). Date and Hugh Darwen: Foundation for Future Database Systems: The Third Manifesto
(2d edition). Reading, Mass.: Addison-Wesley (2000). See also htp:/www.thethirdmanifesto.com,
which contains certain formal extracts from the book, an errata hst. and much olher relevant mate-
rial. Reference (20.1] is also relevant.

The Third Manifesto is a detailed, formal, and rigorous propoéal for the future direction of data-
bases and DBMSs. It can be seen as an abstract blueprint for the design of a DBMS and the
language interface to such a DBMS. It is based on the classical core concepts type. value, vari-
able, and operator. For example, we might have a rype INTEGER, the integer “3" might be a
value of that type; N might be a variable of that type, whose value at any given time is some
integer value (i.e., some value of that type); and “+" might be an operaror that applies to inte-
ger values (i.c., to values of that type). Nore: The emphasis on types in particular is brought out
by the book’s subtitle; A Detailed Study of the Impact of Type Theory on the Relational Mode!
of Data, Including a Comprehensive Mode!l of Type Inheritance. Part of the point here is that
type theory and the relational model are more or léss independent of each other. To be more
specific, the relational model does not prescribe support for any particular types (other than
type boolean); it merely says that attributes of relations must be of some type, thus implying
that some (unspecified) types must be supported. .

The term relvar is taken from this book. In this. connection, the book a!so says this: “The
first version of this Manifesto drew a distinction between database values and database vari-
ables, analogons to the distinction between relation values and refation variabies. It also intro-
duced the term dbvar as shorthand for database variable. While we still believe this distinction
to be a valid one, we found it had iittle direct relevance to other aspects of these proposals. We
therefore decided, in the interest of familiarity, to revert to more traditional terminology.” This

i ' Chapter 3 | An Introduction to Relational Databases 83

decision subsequently turned out to be a bad one . . . To quote reference [23.4): “With hind-

- sight, it would have been much better to bite the bullet and adopt the more logically correct
terms database value and database variable (or dbvar), despite their lack of familiarity.” In the
present book we do stay with the familiar term dazabase, but we decided to do so only against.
our own better judgment (somewhat).

One more point. As the book itself says: “We {confess] that we do feel 2 little uncomfort-
able with the idea of calling what is, after all, primarily a technical document a manifeso.
According to Chambers Twentieth Century Dictionary, a manifesto is a written declaration of
the intentions, opinions, or motives of some person or group (e.g., a political party). By con-

trast, The Third Manifesto is . . . 2 matter of science and logic, not mere intentions, opinions. or
motives." However. The Third Manifesto was specifically written to be tompared and con-
trasted with two previous ones, The Ob;ecr-Orlemed Database System Mamfesro [20.2, 25.1)
and The Third-Generation Database Sysrcm Mamfesto [26.44], and our title was thus effec-
tively chosen for us,

3.4 C, L. Date: “Great News. The Reldtional Model Is Very Much Alwe' . !mp M, dbdebmlk.com

(Augnst "000) >
Ever since it first appcnrcd in 1969 Lhe relational model has been SubjeCICd to an ettmordmary
: variety of attacks by a number of different writers. One recent example was entitled. not at all

\ _ atypically, “Great News. The Relatmnal Model Is Dead!™ This arucle was wrilten as 2 rebuttal
to this position. -

3.5 C.J. Date: “There's Only One Relational Model"' fmp AAvww, dbdebtmk. com (February 2001
Ever since it first appeared in 1969. the relational model has been Subject:d to an extraordinary
variety of misrepresentation and obfuscation by a number of different writers. One recent
example was a book chapter titled “Different Relationil Models.” the first sentence of which
read: “There is no such thing as the relational model for databases anymore sic) than there is
just one geometry.” This article was written as a rebuttal to this position. ~

CHAPTER

An Introduction to SQL

41 Introduction
4.2 Overview
4.3 The Catalog
4.4 Views
4,5 Transactions
4.6 Embedded SQL
4.7 Dynamic SQL and SQL/CLI
48 SQLIs Not Perfect |
49 -~ Summary

~ Exercises

References and Bibliography

-

41 INTRODUCTION

As noted in Chapter I, SQL is the standard language for relational systems. and it is sup-
ported by just about every database product on the market today. SQL was originally
developed by IBM Research in the early 1970s (4.9, 4.10]; it was first implemented on a
large scale in an IBM prototype called System R {4.1-4.3, 4.12-4.14], and subsequently
reimplemented in numerous commercial products from both IBM (4.8, 4.14, 4.21] and
many other vendors. In this chapter we present an overview of the major features of the
SQL language (more detailed aspects, having to do with such matters as integrity, secu-
rity, etc., are deferred to the chapters devoted to those topics). Throughout our discus-
sions, we take the unqualified name SQL to refer to the current version of the standard
(viz., SQL:1999), barring explicit statements to the contrary.! Reference [4.23] is the for-

mal SQL:1999 specification: reference [4.24] is an extensive set of correcnons to that -

specification. -

I A new version of the standard (*SQL:2003") is anticipated in late 2003, and we will occasionally make
explicit reference to that version as well.

85

S

86 Part I [Preliminaries

Note: The previous version of the standard was SQL:1992, and SQL:1999 is meant to
be a compatible extension to that previous version. However, it is only fair to point out
that no product today supports even SQL:1992 in its entirety; instead, products typically
support what might be cafled “a superset of a subset™ of the standard (either SQL:1999 or,
more likely, SQL:1992). To be more specific, most products fail to support the standard in ;
some respects and yet go beyond it in others.” For example, IBM's DB2 product does not .
support all of the standard integrity features, but it does support an operator to rename a
base table, which the standard does not.

A few additional preliminary remarks:

el .ﬂ,&mmu_wmmmyj

® SQL was originally intended to be a “data sublanguage™ specifically (see Chapter 2).
However, with the addition in 1996 of the SQL Persistent Stored Modules fearure
(SQL/PSM, PSM for short), the standard became computationally complete—it now
includes statements such as CALL, RETURN, SET, CASE, IF, LOOP, LEAVE,
WHILE, and REPEAT, as well as several related features such as the ability to
declare variables and exception handlers. Further details’ of PSM are beyond the
scope of this book. but a tutorial description can be found in reference {4.20].

® SQL uses the term table in place of both of the terms relation and relvar. and the
terms row and column in place of ruple and artribute, respectively. For consistency
with the SQL standard and SQL products. therefore, we will do likewise in this chap-
ter (and throughout this book whenever we are concerned with SQL specifically).

® SQL is an enormous language. The specification {4.23] is well over 2.000 pages
long—not counting the more than 300 hundred pages of corrigenda in reference
[4.24]. As a consequence, it is not possible, or even desirable, to treat the subject
exhaustively in a book of this nature, and we have not attempted to do so; rather, we
have omitted many features and simplified many others.

» Finally, it has to be said that (as already indicated at various points'in Chapters 1-3)
SQL is very far from being the perfect relational language—-it suffers from sins of
both omission and commission. Nevertheless, it is the standard. it is supported by just
about every product on the market, and every database professional needs to know
something about it. Hence the coverage in this book.

4.2 OVERVIEW

SQL inciudes both data definition and data manipulation operations. We consider defini-
tional operations first. Fig. 4.1 gives an SQL definition for the suppliers-and-parts data-
base (compare and contrast Fig. 3.9 in Chapter 3). As you can see, the definition includes
one CREATE TYPE statement for each of the six user-defined types (UDTs) and one
CREATE TABLE statement for each of the three base tables (as noted in Chapter 3,
the keyword TABLE in CREATE TABLE means a base table specifically). Each such

Wt el e d e

2 In fact. no product possibly could support the standard in its enzire:jr. because there are simply 100 many :
gaps, mistakes, and inconsistencics in references {4.23] and [4.24). Reference [4.20] includes a detailed
discussion of this problem at the SQL:1992 [evel.

M

Chapter 4 | AnIntroductionto SQL 87

CREATE TYPE St ... ;
CREATE TYPE NAME ... }
CREATE TYPE P# ... ;
CREATE TYPE COLOR ... }
CREATE TYPE WEIGHT ... ;-
CREATE TYPE QTY ... }

CREATE TABLE S
(st sk,
SHAME NAME,
STATUS INTEGER,
CITY CHAR{15),
PRIMARY KEY (S#'))

CREATE TABLE P
{ Pt¢ P,
PNAME NAME,
COLOR COLOR,
WEIGHT WEIGHT,
CITY CHAR(15), P
'PRIMARY KEY (P# "'l;_:.;_

car:me TABLE SP
-{ s¢ sk,
Ps P S
QTY QTY, 5T .
PRIMARY KEY (S#, P#), !
FOREIGM KEY (S%) REFERENCES S,
FOREIGN KEY (P}) REFERENCES P ; -
iy »

Fig.4.1 The suppliers-and-parts.database (SQL definition)

CREATE TABLE statement specifies the name of the base table to be created, the names
and types of the columas of that table, and the primary key and any foreign keys in that
table (possibly some additional information also, not illustrated in Fig 4 1). Also, please
note the following:.’

n We ofien make use of the “#" charactcr in (e.g.) typc names and-column names, but
in fact that character is not legal in the standard.

» We use the semicolon “;” as a statement terminator. Whether SQL actually uses such
terminators depends on the context. The specifics are beyond the scope of this book.

» The built-in type CHAR in SQL requires an associated length—15 in the figure—to
be specified.

Havmcr defined the databaSe. we can now start operating on it by means of the SQL
manijpulative operations SELECT, INSERT, DELETE, and UPDATE. In panicular, we
can perform relational restrict, project,.and join operations on the data, in each case by
using the SQL data manipulation statement SELECT. Some examples are given in Fig.
4.2, Note: The join example in that figure illustrates the point that dot-qualified names
(e.g., S.S#, SP.S#) are sometimes necessary in SQL to “disambiguate” column references.
The general rule—though there are exceptions—is that qualified names are always
acceptable, but unqualified names are acceptable too as long as they cause no ambiguity.

a8 Part [| Preliminaries

Restrict: . Result: [st | pt | oty
SELECT S#, P4, QTY s1 PS 100
FROM SP 81 B6 100
WHERE QTY < QTY (150) ;
Project: Result: | s¢) cITY
SELECT Sk, CITY ' 81 | London
FROM S ; . 82 | Paris
83 | Paris
54 | London
§5 | athens
Join:

SELECT S.5#, SNAME, STATUS, CITY, P, QTY
FROM S, SP
WHERE S.S5# = SP.Sk ;

Result: Sk SNAME STATUS | CITY Pt QTY
S1 | smith 29 | London | P1 | 300
Sl | Smith 20 | London | P2 | 200
81 | smith 20 | London | P3 | 400
S84 | Clark 20 | London | PS5 400

Fig. 4.2 Restrict, project. and join examples in SQL

We remark that SQL also supports a shorthand form of the SELECT clause as illus-
trated by the following example:

SELECT + /* or "SELECT S.** {i.e., the */

 FROM S} /% "** can be dot-qualified) */ .

The result is a copy. of the entire S table; the star or asterisk is shorthand for a.“comma-
list"—see Section 4.6 for a formal explanation of this term—of (a) names of all columns in
the first table referenced in the FROM clause, in the left-to-right order in which those col-
umns are defined within that table, followed by (b) names of all columns in the second table
referenced in the FROM clause, in the left-to-right order in which those columns are
defined within that table (and so on for all of the other tables referenced in the FROM
clause). Nore: The expression SELECT * FROM T, where T is a table name, can be further
abbreviated to just TABLE T.

The SELECT statement is discussed at much greater length in Chapter 8, Section 8.6.

Tuming now to update operations: Examples of the SQL INSERT, DELETE. and
UPDATE statements have already been given in Chapter 1, but those examples deliberately
involved single-row operations only. Like SELECT, however, INSERT, DELETE, and
UPDATE are all ser-level operations, in general (and some of the exercises in Chapter 1 did
in fact illustrate this point). Here are some set-level update examples for the suppliers-and-
parts database:

sicnamaisin TSN LE ORI

Chapter 4 | An Introduction to SQL 89

INSERT
INTO TEMP (P#, WEIGHT)

SELECT P#, WEIGHT

FROM P

WHERE COLOR = COLOR (‘Red‘} ;

This example assumes that we have already created another table TEMP with two

. columns, P# and WEIGHT. The INSERT statement inserts into that table part numbers

and corresponding weights for all red parts.

DELETE
FROM SP
WHERE P# = PF ('P2') ;

This DELETE statement deletes all shipments for part P2.

UPDATE S

SET STATUS = 2 * STATUS ,
CITY = ‘Rome’

WHERE CITY = ‘Paris* ;=

This UPDATE statement doublcs the status for all suPphcrs in Paris and moves thosc

suppliers to Rome. -

Note: SQL does not include a dn‘cct analog of the relational assignment opernnon
However, we can simulate that operation by first deleting all rows from the target table
and then performing an INSERT . . . SELECT.... . (as in the first example above) into that
table.

4.3 THE CATALOG

The SQL standard does include specifications for a standard catalog called the Informa-
tion Schema. In fact, the conventional terms catalog and schema are both used in SQL.
but with highly SQL-specific meanmvs. loosely speaking, an SQL catalog consists of the
descriptors for an individual database.’ and an SQL schema consists of the descriptors
for that portion of that database that belongs to some individual user. In other words.
there can be any number of catalogs (one per database), each consisting ‘of any number of
schemas. However. each catalog is required to include. exactly one schema called
INFORMATION_SCHEMA, and from the user’s perspective it is that schema that, as
already indicated. performs the normal catalog function.

The Information Schema thus consists of a.set of SQL tables whose contents effec-
tively echo, in a precisely defined way, all of the definitions from all of the other schemas

in the catalog in question. More precisely, the Information Schema is defined to contain a

set of views of a hypothetical “Definition Schema.” The implementation is not required to
support the Definition Schema as such, but it is required (a) to support some kind of “Def-
inition Schema™ and (b) to support views of that “Definition Schema” that do look like
those of the Information Schema. Points arising:

3 In the interest of accuracy, we should also say that there is no such thing as a “database™ in the SQL
standard! Exactly what the collection of data is called that is described by a catalog is implementation-
defined. However. it is not unreasonable to think of it as a database.

‘‘‘‘‘

o

AT WO T

B i

e ————— A AT R

90 Part] | Preliminaries

1. The rationale for stating the requirement in terms of two separate constructs as just
described is as follows. First, existing products certainly do support something akin
to the “Definition Schema.” However, those “Definition Schemas™ vary widely from
one product to another (even when the products in question come from the same ven-
dor). Hence the idea of requiring only that the implementation support certain pre-
defined views of its “Definition Schema™ does make sense. ‘

2. "We should really say “an™ (not “the™) Information Schema, since as we have seen
there is one such in every catalog. In general; therefore, the totality of data available
10 a given user will not be described by a single Information Schema. For simplicity,
however, we will continue to talk as if there were just one.

Itis not worth going into great detail on the content of the Information Schema here;
instead, we simply list some of the more important Information Schéma views, in the
hope that their names alone will be sufficient to give some idea of what those views
contain. One point that is worth calling out explicitly, however, is that the TABLES view
contains information for all named tables, views as well as base tables, while the VIEWS
view contains information for views only. :

ASSERTIONS - TABLES
CEECK_CONSTRAINTS TABLE_CONSTRAINTS
COLUMNS TABLE_PRIVILEGES
COLUMN_PRIVILEGES USAGE_PRIVILEGES
COLUMN_UDT_USAGE USER_DEFINED_ TYPES
CONSTRAINT COLUMN_USAGE UDT_PRIVILEGES
CONSTRAINT TABLE_USAGE VIEWS
KEY_COLUMN_USAGE™ VIEW_COLUMN_USAGE
REFERENTIAL CONSTRAINTS VIEW_TABLE_USAGE
SCHEMATA |

Reference {4.20] giﬁes more details; in particular, it ﬁhows how to formulate queries
against the Information Schema (which is not quite as simple as you might expect).

-

4.4 VIEWS

Here is an example of an SQL view definition:

CREATE VIEW GOOD_SUPPLIER
AS SELECT S#, STATUS, CITY
FROM s
WHERE STATUS > 15 ;

And here is an example of an SQL gnery against this view:

SELECT s#, STATUS
FRON GOOQ_SUPPLIER
WHERE CITY = 'London’ ;

Substituting the view definition for the reference to the view name, we obtain an
expression that looks something like this (note the snbquery in the FROM clause):

SELECT GOOD_SUPPLIER.S#, GOCD_SUPPLIER.STATUS
FROM (SELECT S#, STATUS, cI?¥ - -

FROM]

WHERE STATUS > 15 } AS GOOD_SUPPLIER
WHERE GOGD_SUPPLIER.CITY = ‘London™ ;

. e E—

.........

. 1 Chapter 4 | AnlIntroduction o SQL 91

And this expression can then be simplified to something like this:

SELECT S#, STATUS

FROM S

WHERE STATUS > 15

AND CITY = 'London’

This latter query is what is actually executed.
By way of another example, consider the following DELETE operation:

DELETE ‘
FROM GOOD_SUPPLIER
WHERE CITY = ‘London’ ;-

The DELETE actually executed looks something like this:

DELETE .
FROM S N
WHERE STATUS > 15 _
AND CITY = ‘London’ ':_f- i

45 TRANSACTIONS

L - P

S
Nl

SQL includes direct analogs of the BEGIN TRANSACT ION, COMMIT, and ROLL-
BACK statements from Chapter 3, called START TRANSACTION, COI\IMIT WORK,
and ROLLBACK WORK, respectively (the keyword WORK is optional). -

2

4.6 EMBEDDED SQL

. Most SQL products allow SQL statements to be executed both directly (i.c., interactively
. from an online terminal) and as part of an application program (i.e., the SQL statements
can be embedded, meaning they can be.intermixed with the programming language state-
ments of such a program) In the éembedded case, moreover, the, npphcauon program can
typically be written in a variety of host languages; the SQL Standard includes support for
Ada, C, COBOL, Fortran, Java, M (formerly known as MUMPS), Pascal, and PL/I. In this
section we consider the embedded case specifically.

- A fundamental principle underlying embedded SQL, which we call the dual-mode
principle, is that any SOL statement that can be used interactively can also be embedded
in an application program. Of course, there are various differences of detail between a
given interactive SQL statement and its embedded counterpart, and retrieval operations in
particular require significantly extended treatment in the embedded case—see later in this

~ section—but the principle is nevertheless broadly true. (Its converse is not, by the way;
several embedded SQL statements cannot be used interactively, as we will see.)

Before we can discuss the actual statements of embedded SQL, it is necessary to cover

a number of preliminary details. Most of those details are illustrated by the program

1
3

M it N L A B T RPN w0 v L S s e 8 .

92 Part | Preliminaries

EXEC SQL BEGIN DECLARE SECTION ;

DCL SQLSTATE CHAR(5) i
DcL B¢ CHAR(6} 3
DCL WEIGHT FIXED DECIMAL(S5,1} ;

EXEC SQL END DECLARE SECTION ;

P} = 'P2' ; /*t for example . e/
EXEC SQL SELECT P.WEIGHT °

INTO sWEIGHT

FROM P

WHERE P.P# = P¢ (:Pt) ;

IF SQLSTATE = ‘00000’ :
THEN ... ;) /* WEIGHT = retrieved value */

ELSE ... : . /* some exception cccurred */

Fig.4.3 Fragment of a PL/I program with embedded SQL

SICIUTE NTUINIR S VS U YN VI P onn mmmmmmmmﬁ&@’aﬁd

fragment shown in Fig. 4.3. (To fix our ideas we assume the host language is PL/L Most of 4
. the ideas translate into other host languages with only minor changes.) Points arising: -

1. Embedded SQL statements are prefixed by EXEC SQL. to distinguish them from ;
statements of the host language, and are terminated by a special terminator symbol]
(a semicolon for PL/I). = _ .

2. An executable SQL statement (for the rést of this section we will mostly drop the

“embedded” qualifier) can appear wherever an executable host statement can appear.

. Note that “executable,” by the way: Unlike interactive SQL, embedded SQL includes

. some statements that are purely declarative, not executable. For example, DECLARE

CURSOR is not an executable statement (see the subsection “Operations Involving

Cursors” later), nor are BEGIN and END DECLARE SECTION (see point 5), and
nor is WHENEVER (see point 9). (e

3. SQL statements can include refercnces to host variables: such references must
include a colon prefix to distinguish them from SQL column names. Host variables
can’ appear in embedded SQL wherever a literal can appear in interactive SQL. They
can also appear in an INTO clause on SELECT (see point 4) or FETCH (again, see
the subsection “Operations Involving Cursors™ later) to designate targets for retrieval

_ operations. o

4. Notice the INTO clause on the SELECT statement in Fig. 4.3. The purpose of that
clause is (as just indicated) to specify the target variables into which values are to be
retrieved; the ith target variable mentioned in the INTO clause corresponds to the ith
value to be retrieved, as specified by the SELECT clause.

s. All host variables referenced in SQL statements must be declared (DCL in PL/T)
within an embedded SQL declare section, which is delimited by the BEGIN and
END DECLARE SECTION statements.) .

6. Every program containing embedded SQL statements must include a host variable
called SQLSTATE. After any SQL statement has been executed, a status code is
rerurned to the program in that variable; a value of 00000 means the statement exe-

T Attt o

(TR TR T FFTEREE S ITER Y

L e

Chapter 4 [An Introduction to SQL 93

cuted successfully, and a value of 02000 means the statement did execute but no data
was found to satisfy the request (see reference [4.23] for details of other values). In
principle, therefore, every SQL statement in the program should be followed by a test
on SQLSTATE, and appropriate action taken if the value is not what was expected. In
practice, however, such testing can often be implicit (see point 9).

. Every host variable must have a data type appropriate to the uses to which it is put.

For example, a host variable that is to be used as a target (e.g., on SELECT) must
have a data type that is compatible with that of the expression that provides the value -
to be assigned to that target: likewise, a host variable that is to be used as a source
(e.g., on INSERT) must have a data type that is compatible with that of the SQL col-
umn to which values of that source-are to be assigned. The details are a little compli-
cated, however, and we therefore ignore the issue for the remainder of this chapter
(for the most part, at any rate), deferring further discussion to Chapter 3, Section 5.7.

- Host variables and SQL coiurrms can have the same name. .
. As already mentioned. every SQL statement should in pnncnple be followed by a test

of the returned SQLSTATE value, The WHENEVER statement is provided to sim-
plify this process. The WHENEVER statement takes the form:

EXEC SQL WHENEVER <condition> <action> ; _

. Possible <condirion>s includs NOT FOUND, SQLWARNING. and SQLEXCEP-

TION (others include specific SQLSTATE values and violation of specified integrity
constraints); <action> is either CONTINUE or a GO TO statement. WHENEVER is
not an executable statement-—rather, it is a directive to the SQL compiler: “WHEN-
EVER <condition> GO TO <label>" causes the compiler to insert a statement of the
form “IF <condition> THEN GO TO <label> . . ." after.each executable SQL state-.

" ment it encounters; f‘WHENEV ER <condition> CONTINUE" causes it not to insert

any such statements, the implication being that the programmer will insert appropri-
ate statements by hand. The <condition>s NOT FOUND. SQLWARNI\IG ‘and

: SQLEXCBP’I‘ION are defined as follows: :

NOT FOUND means no data was found
—SQLSTATE = 02xxx
SQLWARNING means. a minor error Occurred
‘ —SQLSTATE = Ql.xxx
SQLEXCEPTION means - a major error occurred
: -~see reference {4.23] for SQLSTATE

Each WHENEVER statement the compiler encounters on its sequential scan through
the program text for a parucular condition overrides the previous one it found for that
condition.

10. Note finally that, to use thc terminology of Chapter 2, embedded SQL constitutes a

loose coupling between SQL and the host Janguage.

So much for the preliminaries. In the rest of this section we concentrate on data

. manipulation operations specifically. As already indicated, most of those operations can
be handled in a fairly straightforward fashion (i.e., with only minor changes to their

e

e L . v oo o — e,

S —

PartI | Preliminaries -

syntax). Retrieval operations require special treatment, however. The problem is that such
operations retrieve many rows (in general), not just one, and host languages are generally
not equipped to handle the retrieval of more than one row at a time. It is therefore neces-
sary to provide some kind of bridge between the set-level retrieval capabilities of SQL and
the row-level retrieval capabilities of the host. Such is the purpose of cursors. A cursor
consists essentially of a kind of (logical) pointer—a pointer in the application, that is, not
one in the databasc—that can be used to run through a collection of rows, pointing to each
of the rows in turn and thereby providing addressability to those rows one at a time. How-
ever, we defer detailed discussion of cursors to the subsection “Operations Involving Cur-
sors,” and cqnsidcr first those statements that have no need of them.

L]

Operatmns Not Involving Cursors
The data manipulation statements that do not need cursors are as fol]ows

» Singleton SELECT

» INSERT

= DELE‘TE (except the CURRENT form—see the next subsection) .
u UPDATE (except the CURRENT form—see the next subsection)

We give examples of each in turn.

Singleton SELECT: Get status and city for the suppher whose supplier number is given by
the host variable GIVENS#. T
EXEC SQL SELECT STATUS, CITY
INTO :RANK, :TOWN
FROM S
WHERE S§ = SE (:GIVENSE) ; _

We use the term singleton SELECT to mean a SELECT expression that evaluates to a
table containing at most one row. In the example, if there is exactly one row intable S satis-
fying the condition in the WHERE clause, then the STATUS and CITY values from that
row will be assigned to the host variables RANK and TOWN as requested, and SQLSTATE
will be set to 00000; if no S row satisfies the WHERE condition, SQLSTATE will be set to
02000; and if more than one does, the program is in error, and SQLSTATE will be set to an

error code.

INSERT: Insert a new part (part number, name, and weight given by host variables b#,
PNAME, PWT, respectively; color and city unknown) into table P.
EXEC SQL INSERT '
INTO P (P#, PNAME, WEIGHT)
VALUES (:P#, :PNAME, :PWT } ;

The COLOR and CITY valnes for the new part will be set to the apphcable default
values (see Chapter 6, Section 6.6). Note: For reasons beyond the scope of this book, the
default for a column that is of some user-defined type will necessarily be null. (We defer
detailed discussion of nulls to Chapter 19. Occasional references prior to that point are
unavoidable, however.)

EEE

-
.-

Chapter 4 | An Introduction ta SQL 95

DELETE: Delete all shipments for suppliers whose city is given by the host variable
CITY.

EXEC SQL DELETE
. FROM SP
WHERE :CITY =
(SELECT CITY
FROM S
WHERE S.Sé = SP.S§) ;

If no supplier rows satisfy the WHERE condition, SQLSTATE will be set to 02000.
Again, note the subquery (in the WHERE clause this tlme) a

UPDATE: Increase the status of all London suppliers by the amount gwen by the host vari-

able RAISE.
EXEC SQL UPDATE S

SET . STATUS = STATUS + 1RAISE
WHERE CITY = ‘-Lcmdon' ;

Again SQLSTATE will be set to 02000 xf no SP rows satisfy thc WHER.E condition.

-

Operations Involving Cursofs S

Now we turn to the question of set-level retrieval—that is, retriéval of a set containing an
arbitrary number of rows, instead of at most one row'as in the singleton SELECT case dis-
cussed in the previous subsection, As explained earlier, what is needed here is a mecha-
nism for accessing the rows in the set one by one, and cursors provide such a mechanism.
The process is illustrated in outline by the example of Fig. 4.4, which is intended to
retrieve S#, SNAME, and STATUS mformatlon for all suppllers in the cny given by the
host variable Y.

Explanation: The. statement “DECLARE X CURSOR . ‘defmcs a.cursor called X,
with an associated table expression (i.e., an expression that evaluates to a table), specified
by the SELECT that forms part of that DECLARE. That table expression is not evaluated
at this point; DECLARE CURSOR is a purely declarative statement. The expression is

-

EXEC SQL DECLARE X CURSOR FOR /¢ define the cursor */
SELECT $.S#, S.SNAME, S.STATUS
FROMX &

WHERE S.CITY = 1Y
ORDER BY 54 ASC ;

EXEC SQL OPEN X /* execute the query */
DO for all S rows accesgible via X i
EXEC SQL FETCH X INTO :5%, :SNAME, :STATUS ; i
I+ £ef.ch next supplier */
END ;) , . .
EXEC SQL CLOSE X ; o l * deactivate cursor X +/

Fig. 4.4 Maulti-row retrieval e:éample

96 PartI | Preliminaries

evaluated when the cursor is opened (“OPEN X"). The statement “FETCH X INTO .. ”
is then used to retrieve rows one at a time from the resulting set, assigning retrieved values
l to host variables in accordance with the specifications of the INTO clause in that state-
‘ ment. (For simplicity we have given the host variables the same names as the correspond-
I’ ing database columns. Notice that the SELECT in the cursor declaration does not have an
INTO clause of its own.) Since there will be many rows in the result set, the FETCH will
: normally appear inside a loop; the loop will be repeated as long as there are more rows
' still to come in that result set. On exit from the loop, cursor X is closed (“CLOSE X™).
Now we consider cursors and cursor operations in more detail. First of all, a cursor is
declared by means of a DECLARE CURSOR statement, which takes the general form

EXEC SQL DECLARE <cursor name> CURSOR
FOR <table exp> [<ordering> | ; ‘ 1

WA kT om0 H P il B W G

(we are ignoring a few optional specifications in the interest of brevity). The optional ;
<ordering> takes the form -]

ORDER BY <order itam commalist>

where (a) the commalist contains at least one <order item> and (b) each <order iteni> con-
sists of a column name—ungqualified, please note*—optionally followed by ASC (ascend- 3
ing) or DESC (descending), where ASC is the default. If no ORDER BY clause is speci-

" fied, the ordering is system-determined. (As a matter of fact the same is true if an ORDER
'BY clause is specified, at least as far as rows with the same value for the specified <order

] zrem ¢ommalist> are concemed.) 3
" Note: The useful term commalist is deﬁned as follows. Let <1.'yz> denote an arbitrary :
syntactlc category (i.e., anything that appears on the left side of some BNF production g
 rule). Then the expression <xyz commalist> dengtes a sequence of zero or more <xyz>s 1
in which each pair of adjacent <xyz>s is separated by a comma (and optionally one or ;
g

more blanks). We will be making extensive use of the commalist shorthand in futurc syu-
tax rules (all syntax rules, that is, not just SQL. ones).
As previousty stated, the DECLARE CURSOR statement is dec!amnve not execut-
_ able; it declares a cursor with the specified name and having the specified table expression
" and ordering permanently ‘associated with it. The table expression can include host vari-
able references. A program can include any number of DECLARE CURSOR statements,
each of which must (of course) be for a different cursor.
Three executable statements are provided to opemtc on cursors: OPEN, FETCH, and
CLOSE.

®m The statement
EXEC SQL OPEN <cursor name> ;

4 Actually, the column name can be quahﬁed if the specified <rable eq» abides by a rather complex set
of rules, The rules in question were introduced with SQL:1999, which also introduced rules according to
which an <order item> can sometimes specify either (a) a computational expressmn as in {e.g.) ORDER
BY A+B, or (b) the name of a column that is not part of the result table, as in (e.g.) SELECT CITY
FROM S ORDER BY STATUS. Details of these rules are heyond the scope of this book.

1)
-

At R

b :
(LR W

Chapter 4 | An Introduction to SQL 97

opens the specified cursor (which must not currently be open). In effect, the tabie ex-
pression associated with the cursor is evaluated (using the current values for any host
variables referenced within that expression); a set of rows is thus identified and be-

. comes the current active set for the cursor. The cursor also identifies a position within
that active set: namely, the position just before the first row. Nore: Active sets are.
always considered to have an ordering—see the earlier chscussmn of ORDER BY—

and so the concept of position has meaning. s

m The statement

EXEC SQL FETCH <cursor name> -
INTC <host variable reference commalist> ; °

advances the specified cursor (which must be open) to the next row in the active set
and then assigns the ith value from that row to the ith host variable referenced in the
INTO clause. If there is no pext row when FETCH is executed, SQLSTATE is set to
02000 and no data is retrieved.

® The statement .
EXEC SQL CLOSE <cursor n.m'e> 3

closes the specified cursor (which must currently be open). The cursor now has no cur-
rent active set. However, it can subsequently be opened again, in which case it will
acquire another active set—probably not exactly the same one as before, especially if

the values of any host variables referenced in the cursor declaration have changed in -

the meantime. Note that changing the values of those host variables while the cursor is
open has no effect on the current active set.

Two further statements can include references to cursors, the CURRENT forms of
DELETE and UPDATE, If a cursor, X say, is currently positioned on a particular row.
then it is possible to DELETE or UPDATE “the current of X" —that is, the row on which
X is positioned. For example:

EXEC SQL UBDATE §

SET STATUS = STATUS + :RAISE
WHERE CURRENT OF X ;

The CURRENT forms of DELETE and UPDATE are not permitted if the <table
exp> in the cursor declaration would define a nonupdatable view if it were part of a
CREATE VIEW statement (see Chapter 10, Section 10.6).

47 DYNAMIC SQL AND SQL/CLI

The previous section tacitly as'sﬁmed we could compile any given program in its
entirety—SQL statements and all—"ahead of time," as it were (i.e., prior to run time). For

; certain applications, however, that assumption is unwarranted. By way of example. con-
£ sider an online application (recall from Chapter 1 that an online application is one that
XN 5 Sets per se do not have an ordering {see Chapter 6), so an “active set™ is not really a set. as such, ac all
.3 It would be better to think of it as an ordered list or array (of rows). "
| £ : - -

e U AR—- ———

Part [| Preliminaries

supports access to the database from an online terminal or something analogous). Typi-
cally, the steps such an application must go through are as follows (in outline):
1. Accept a command from the terminal. '
Analyze that command,
Execute appropriate SQL statements on the database.

AW

Return a message and/or results to the terminal.

Now, if the set of commands the program can accept in Step | is fairly small, as in the
case of (perhaps) a program handling airline reservations, then the set of possible SQL
statements to be executed will probably also be small and can be “hardwired” into the
program. In this case, Steps 2 and 3 will consist simply of logic to examine the input com-
mand and then branch to the part of the program that issues the predefined SQL state-
ment(s). On the other hand, if there can be great variability in the i input. then it might not
be practicable to predefine and “hardwire” SQL statements for every possible command.
Instead, what we need to do is construcr the necessary SQL statements dynamically, and
then compile and execute those constructed statements dynamically. The SQL facilities
described in this section are provided to assist in this process.

Dynamic SQL

Dynamic SQL is part of embedded SQL. It consists of a set of “dynamic statements™~—
which themselves are compiled ahead of time—whose purpose is precisely to support the
compilation and execution of regular SQL statements that are constructed at run time.
Thus, the two principal dynamic statements are PREPARE (in effect, compile) and EXE-
CUTE. Their use is ﬂlustrarcd in the following unrealistically simple, but accurate, PL/T
example. -

DCL SQLSOURCE CHAR VARYING (65000) ;

SQLSQURCE = 'DELETE FROM SP WHERE QTY < QTY (300)* ;
EXEC. SQL PREPARE SQLPREPPED FROM :SQLSOURCE ;
EXEC SQL EXECUTE SQLPREPPED ;

Explanation:

1. The name SQLSOURCE identifies a PL/I variable (of type “varying length character
. string™) in which, at run time, the program will somehow construct-the source form of
some SQL statement—a DELETE statement, in onr particular example—as a charac-
ter string.
The name SQLPREPPED, by contrast, identifies an SQOL variable, not a PL/I variable,
that will be used to hold the compiled form of the SQL statement whose source form
is given in SQLSOURCE. (The names SQLSOURCE. and SQLPREPPED are arbi-
trary, of course.)
3. The PL/I assignment statement “SQLSOURCE =. . , ;" assigns to SQL.SOURCE the
source form of an SQL DELETE statement. In pmctxce the process of constructing
such a source statement is likely to be much more complex-—perhaps involving the

¥

W

Chapter 4 | AnIntroduction to SQL 99

input and analysis of some request from'the end.user, expressed in natural language
or some other form more user-friendly than SQL.

' 4. The PREPARE staternent then takes that source statement and “prepares” (compiles)
it to produce an executable version, which it stores in SQLPREPPED.

5. Fimally, the EXECUTE statement executes that SQLPREPPED version and thus
causes the actual DELETE to occur, SQLSTATE information from the DELETE is
returned exactly as if the DELETE had been executed directly in the normal way.

Note that because it denotes an SQL variable, not a PL/I variable, the name
SQLPREPPED does not have a colon prefix when it is referenced in the PREPARE and
EXECUTE statements. Note too that such SQL variables do not have to be explicitly
declared.

By the way, the process _|ust descnbed is essentially what happens when SQL state-
ments themselves are entered integactively. Most systems provide some kind of interactive
SQL query processor. That query processor is in effect just a particular online application:
it is ready to accept an extremely wide variety of input—viz., any valid (or invalid!) SQL
statement. It then uses the facilities of dynamic SQL to construct suitable SQL. statements
corresponding to its input, to compile and execute those constructed statements, and to
return messages and results back to the terminal..

Of course, there is much more to dynamic SQL than the PREPARE and EXECUTE
" statements as just described: for example there are mechanisms_for parameterizing the
statements to be prepared and providing arguments to be. substituted for those parameters
when those statements are executed, and there are counterparts to the cursor facilities as
described in the previous section: In particular, there is an EXECUTE IMMEDIATE state-
ment, which effectively combmes the functions ot' PREPARE and EXECUTE into a sin-
gle operation, S

Call-LeVel Interfaces

The SQL Call-Level Interface t‘eaturc (SQUCLI cL! for short) was addcd to the stan-
dard in 1995. SQL/CLI is heavily based on Microsoft’s Open Database Connecrivity inter-
face, ODBC. Both permit an application written jn one of the usual host Janguages 10 issue
database requests, not via embedded SQL, but rather by invoking certain vendor-provided
routines. Those routines, which must have been linked to the application in question, then
use dynamic SQL to perform the requested database operations on the application’s
behalf, (From the DBMS's point of view, in other words, those routines can be thought of
as just another application.)

As you can see, SQL/CLI and ODBC both addrcss thc same general problem as
dynamic SQL does: They both allow applications to be written for which the exact SQL
staternents to be executed are not known until run time. However, they actually represent a
* better approach to the problem than dynamic SQL does. There are two principal reasons for
this state of affairs: .

u Dynarmc SQL is a source code standard. Any applncauon using dynamic SQL thus
requires the services of some kind of SQL compiler in order to process the opera~
tions—PREPARE, EXECUTE, and so on—prescribed by that standard. SQL/CLL by

i b u.:fa'&iil

100 Part [| Preliminaries

contrast, merely standardizes the details of certain routine invocations (i.e., subrou-
tine calls, basically); no special compiler services are needed, only the regular ser-
vices of the standard host language compiler. As a resuit, applications can be distrib-
uted (perhaps by third-party software vendors) in *shrink-wrapped” object code form.

= What is more, those applications can be DBMS-independent; that is, SQL/CL]
includes features that permit the creation (again, perhaps by third-party software ven-
‘dors) of generic applications that can be used with several different DBMSs, instead
of having to be specific to some particular DBMS.

Here by way of illustration is an SQL/CLI analog of the dynamic SQL example from
the previous subsection:

char sqglsource [65000] ;

strepy (sqlsource,
"DELETE FROM SP WHERE QTY < QTY { 300)}~) :
e = SQLExecDirect (hstmt, (SQLCHAR *)sglsource, SQL_NTS) ;

Explanation:

1. Since real-world SQL/CLI applications tend to use C as host language, we use C

) instead of PL/I as the basis for this example. We also follow the SQL/CLI specifica-

tion in using lowercase (or mixed uppercase and lowercase) for variable names. rou-

tine names, and the like, instead of all uppercase as elsewhere in this book (and we

show such names in boldface in these explanatory notes in order to set them off from

surroundmg material). Note too that, precisely because it is a standard for invoking

routines from a host Janguage, SQL/CLI syntax—though not of course the corre-
spondmg scmnnncs—vnll vary from one host language to another, in general.

The C. funcuon strepy is invoked to copy the source form of a certam SQL DELETE
~ statement into the C variable sqlsource.
3. The C assignment statement (“="} invokes the SQL/CLI routine SQLExecDirect—
" the analog of dynamic SQL's EXECUTE IMMEDIATE-—to execute the SQL state-
ment contained in sqisource, and assigns the return code resulting from that invoca-
tion to the C variable re.

[

As you would probably expect. SQL/CLI includes analogs of more or less everything
in dynamic SQL, plus a few extra things as well. Further details are beyond the scope of
this book. However, you should be aware that interfaces such as SQL/CLI, ODBC, and
JDBC (which is a Java variant of ODBC, in effect) are becoming increasingly imporiant
in practice, for reasons to be discussed in Chapter 21, Section 21.6.

48 SOL IS NOT PERFECT

As stated in Section 4.1, SQL is very far from being the “perfect” relational language—it
suffers from numerous sins of both omission and commission. Specific criticisms will be
offered at appropriate points in subsequent chapters, but the overriding issue is simply that
SQL fails m all too many ways to support the relational model properly. As a conse-
quence, it is not at all clear that today’s SQL products really deserve to be called

1

Fae

e

;i)

FEBAREEILER NIy 2 L AR S RMDAAPE LD Ies S0 30000 hrormis U Aol 08 e) LRSI IAN R an i e o AR mu s M S R ST e S BB ;r". RIS

. :
o iy,

Chapter 4 | An Introduction to SQL 101

“relational” at all! Indeed, as far as this writer is aware there is no product on the market

today that supports the relational model in its entirery. This is not to say that some parts .
of the model are unimportant; on the contrary, every detail of the modef is important, and
_important, moreover, for genuinely practical reasons. Indeed, the point cannot be stressed

too strongly that the purpose of relational theory is not just “theory for its own sake”;
rather, the purpose is to provide a base on which to build systems that are 100 percent
practical. But the sad fact is that the vendors have not yet really stepped up to the chal-
lenge of implementing the theory in its entirety. As a consequence, the “relational” prod-
ucts of today regrettably all fail. m one way or another, to del;ver on the full promise of
relational technology.

-

4.9 SUMMARY

This concludes our introduction 10 some of the major features of the SQL standard. We

have stressed the fact that SQL is tmpo:tant from a commercial perspective, though it is .

sadly deficient from a relational dne.

SQL includes both a data deﬁ_nitig’ﬁ language (DDL) component and a data manip-
nlation language (DML) component. The SQL DML can operate at both the external
level (on views) and the conceptual level (on base tables). Likewise, the SQL DDL can be
used to define objects at the external level (views), the conceptual level (base tables), and
even—in most commercial systems, though not in the standard per se—the internal level
as well (indexes or other auxiliary structures). Moreover, SQL also provides certain dara
controf facilities—that is, facilities that cannot reaily be classified as belonging to either
the DDL or the DML. An example of such a facility is the GRANT statement, which
allows users to grant access privileges to each other (see Chapter 17).

We showed how SQL can be used to create base tables, using the CREATE TABLE
statement (we also touched on the CREATE TYPE statement in passing). We then gave
some examples of the SELECT. INSERT, DELETE. and UPDATE statements, showing
in particular how SELECT can be used to express the relational restrict, project, and join
operations. We also briefiy described the Information Schema, which consists of a set of
prescribed views of a hypbthetical “Pefinition Schema.” and we took a quick Jook at the
SQL facilities for dealing with views and transactions,

A large part of the chapter was concerned with embedded SQL. The basic idea
behind embedded SQL is the dual-mode principle—that is, the principle that (insofar as
possible) any SQL statement that can be used interactively can also be used in an applica-
tion program. The major exception to this principle arises in connection with multi-row

_ retrieval operations, which require the use of a cursor to bridge the gap between the set-

level retrieval capabilities of SQL and the row-ievel retrieval capablhucs of a host
language such as PL/L. °

.Following a number of necessary, though mostly syntactic, prchmmancs (including
in particular a brief explanaton of SQLSTATE), we considered those operations—
singleton SELECT, INSERT, DELETE, and UPDATE—that have no need for cursors.

6 But see reference (20.1).

Bl

s

102 Part I | Preliminaries

Then we tumed to the operations that do need cursors, and discussed DECLARE
CURSOR, OPEN, FETCH, CLOSE, and the CURRENT forms of DELETE and
UPDATE. (The standard refers to the CURRENT forms of these operators as positioned
DELETE and UPDATE, and uses the teim searched DELETE and UPDATE for the non-
CURRENT or “out of the blue” forms.) Finally, we introduced the concept of dynamic

- SQL, describing the PREPARE and EXECUTE statements in particular, and we also
briefly explained r.hc SQL Call-Level Interface, SQL/CLI {we also mentioned ODBC
and JDBC).

EXERCISES | .

4.1 Fig. 4.5 shows some sample data values for an extended form of the suppliers-and-pants data- :
base called the suppliers-parts-projects database.” Suppliers (S), parts (P), and projects () are i
uniquely identified by supplier number (S#), part number (P#), and project number (J#), respec- :
tively. The predicate for SPJ (shipments) is: Supplier S# supplies part P# to project J# in quanrity
OTY (the combination {S#.P#.J#} is the primary key, as the figure indicates). Write an appropriate
set of SQL definttions for this database. Nore: This database will be used as the basis for numerous
exercises in subsequent chapters,

S { 5 | SNAME | STATUS | CITY SPT | s¢ | P& | J# | QTY
51 | Smith . 20 | London S1}! Pl J1l | 200

82 | Jones 10 | Paris S1|P1lL} J¢4 { 700

8] | Blake 30 | Paris §2 | #3 F J1 | 400

S4 | Clark 20 | London §2 | P3 | J2 | 200

55 | Adams 30 | Athens o1 s2 P3| I3| 200

S2 | P3| J4 | 500

§2) P3 | J5 | 600

P | P¥ | PNAME | COLOR | WEIGHT | CITY :;‘: }:g g.ﬁ ; 3 3
Bl Nut Red 12.0 London s2 P5 J2 100

P2 | Bolt Green 17.0 | Paris 183 | p3 | J1 200

Pl Screw §{ Blue 17.4 | Oslo 83 P4 J2 500

P4 | Screw | Red 14.0 { London S4 { P6 | I3 | 300

PS5 | Cam Blue 12.0 | Paris 84 Peg | J7 300

P6 | Cog Red 19.0 | London ss | P2 | J2 | 200

§5 P2 b 100

85 | PS | J5 | 500
ss | S |'J7 | 100

J | Jt | JNAME CITY ss | p6 | 32 | 200
J1] Sorter Paris S SS | P1 | J¢ | 100
J2 | Display { Rome 8 | P3| J4 | 200
J3 | OCR Athens S5 P4 Ji 800
J4 | Console { Athens 85 | PS5 | J4 | 400
J5 | RAID London 8s | P6 | J4¢ | 500
J6 | EDS Oslo . .
J7 { Tape London

Fig.4.5 The suppliers-parts-projects database (sample values)

7 For ease of reference, Fig. 4.5 is repeated (along with Fig. 3.8) on the inside back cover of the book.
L .

Chapter 4 | An Introduction to SQL 103

4.2 In Section 4.2 we described the CREATE TABLE statcmcnt as defined by the SQL standard
per se. Many commercial SQL products support additional options on that statement, however. typi-
cally having to do with indexes, disk space allocation, and other implementation matters (thereby
undermining the objectives of physical data independence and intersystem compatibility). Investi-
gate any SQL product that might be available to you. Do the foregoing criticisms apply to that prod-
uct? Specifically, what additional CREATE TABLE options does that product support?

4.3 Once again, investigate any SQL product that might be available to you. Does that product sup-
. port the Information Schema? If not, what does its catalog support look like?

4.4 Give SQL formulations for the following updates to the suppliers-parts-projects database:

a. Insert a new supplier S10 into table S (the name and city are Smith and New York, respectively;
the status is not yet known).

b.” Delete all projects for which there are n6 shipments,
c. Change the color of all red pans to orange.

4.5 Again using the supphcrs-pans«projects database, write a program with embedded SQL state-
ments to list all suppliers in supplier tumber order, Each supplier should be immediately followed in
the listing by all projects supplied by that supplier, in project number order. -

4.6 Lettables PART and PART_S'[_RUCIURE be defined as follows:

CREATE TABLE PART Yo o
(P P#, DESCRIPTION CHAR(100), ‘ .
PRIMARY KEY (P4)) 7 T

CREATE TABLE PART_STRUCTURE
{ MAJOR_P# P¥, MINOR P# P4, q-r! Q'l“l,

PRIMARY KEY (MAJOR_P#, MINOR P#),

FOREIGN KEY { MAJOR_P#) REFERENCES PART, .

FOREIGN KEY { MINOR_P4) REFERENCES PART) j .
Table PART_STRUCTURE shows which parts (MAJOR_P#) contain which other parts
(MINOR_P#)} as first-level components. Write an SQL program to list all component parts of a given
part, (o all levels (the so-called part explosion problem). Note: The sample data shown in Fig. 4.6
might help you visualize this problem. We remark that table PART_STRUCTURE shows how bill-
of-materials data—see Section 1.3, subsection “Enuues and Relauonslups —is typically repre-
sented in a relational system. :

-

PART_STRUCTURE | MAJOR_P# | MINOR P# | QTY

' ~ Pl . B2 2 |
Pl P3 4
P2 P3 1
P2 P4 3
B3 P5 9
P4 P5 8
PS P6 3

Fig. 4.6 Table PART_STRUCTURE (sample value}

t
'

104

- e . —— T 1n, AS—— s .

Part I | Preliminaries

REFERENCES AND BIBLIOGRAPHY ‘

Appendix H of reference [3.3] gives a detailed comparison between SQL:1999 and th
The Third Manifesto. See also Appendix B of the present book. nd the proposals of
4.1 M. M. Astrahan and R. A. Lorie: "SEQUEL-XRM: A Relational System.” Proc _
Regional Conf.. San Francisco, Calif. (April 1975). - ystem,” Proc. ACM Pacific

Describes the first prototype implementation of SEQUEL [4.9], the earlies]

. Al tv

See also references [4.2) and (4.3], which perform an analogous function for Sy:::::r;l.of sek-

4.2 M. M. Astrahan er al.: “System R: Relational Approach to Database Management.” ACM TODS

1, No. 2 (June 1976).
System R was the major prototype implementation of the SEQUEL/2 (later SQL
. - . ') l
{4.10]. This paper describes the architecture of System R as originally planned. Sch also sefo

ence [4.3].
4.3 M. W. Blasgen eral.: “System R: An Architectural Overview.” IBM Sys. J. 20, No. | (February

1981). °
This paper describes the architecture of System R as it became by the time the system was fully

implemented (compare and contrast reference [4.2]).
4.4 Joe Celko: SQL for Smarties: Advanced SQL Programming. San Francisco. Cfﬂif-‘[Morzan

Kaufmann (1995).
“This is the first advanced SQL book availabie that provides a comprehensive presentation of
the techniques necessary o SUpport your progress from casual user of SQL t eram
mer” (from the book’s own cover). ‘ QL to.expert program-
4.5 Surajit Chaudhuri and Gerhard Weikum: “Rethinking Database System Architecture
: T
Self-Tuning RISC-Style Database System.” Proc. 26th Int. Conf. on Very Large Data Bosee o
Egypt (September 2000). :
This paper includes some severe criticisms of SQL. To quote: “SQL is pai .
- : : painful. A big head
that comes with a database system is the SQL language. It is the union of f.ll conclcgivaﬁ:fc::
tures (many of which are rarely used or should be discouraged [from] use anyway) and is way
too complex for the typical application developer. Its core, say selection-projection-join querie}.
and aggregation. is extremely useful, but we doubt that there is wide and wise use of all the
bells and whistles. Understanding semantics of {SQL:1992, let alone SQL:1999], covering all
combinations of nested (and correlated) subqueries, [nulls], triggers, ADT funct;ons elc gis a
nightmare. Teaching SQL typically focuses on the core, and leaves the featurism os a "lcarr.xing-
on-the-job’ life-experience. Some trade magazines occasionally pose SQL quizzes where the
challenge is to express a complicated information request in a single SQL request. Those state-
ments run over several pages, and are hardly comprehensible.”
4.6 Andrew Eisenberg and Jim Melton: “SQL:1999, Formerly Known as SQL3." ACM SIGMOD

Record 28, No. I (March 1999).
A brief introduction to the new features that were added to the SQL standard with the publica-

tion of SQL:1999.
4.7 Andrew Eisenberg and Jim Meiton: “SQLJ Part 0. Now Known as SQL/OLB (Object La
Bindings)” ACM SIGMOD Record 27, No. 4 (December 1998); “SQLJ—Part (1: éE"i R:ﬁi:
Using the Java™ Programming Language,” ACM SIGMOD Record 28, No. 4 (December 1999). See
also Gray Clossman ef al.: “Java and Relational Databases: SQLJ." Proc. 1998 ACM SIGMOD. [nt.
Conf. on Management of Data, Seattle, Wash. (June 1998). .

A) N o4 : _,-!.o,- Ii i I l‘ iu

;

Chapter ¢ | An Introductionto SQL 105

The name SQLJ originally referred to a project to consider possible degrees of integration
between SQL and Java (a joint effort involving some of the best-known SQL vendors). Part §
of that project deait with embedded SQL in Java programs; Part 1 was concemned with the idea
of invoking Java from SQL (e.g., calling a stored procedure—see Chapter 21—that is written
in Java); and Part 2 addressed the possibility of using Java classes as SQL data types (e.g., as a
basis for defining columns in SQL tables). Part 0 was included in SQL:1999, and Parts 1 and 2
will almost certainly be included in SQL:2003 (see the annotation to reference {4.23]).

4.8 Donald D. Chamberlin: Using the New DB2. San Francisco, Calif.: Morgan Kaufmann (1996).

A readable and comprehensive description of a state-of-the-art commercial SQL product, by
one of the principal designers of the original SQL language {4.9—4.11]. Nore: The book also

discusses “some controversial decisions™ that were made in the design of SQL—pnmanly the’
decisions to support (a) nuils and (b) duplicate rows. “My [i.e., Chamberlin's] purpose . . . is

historical rather than persuasive—I recognize that nulls and duplicates are religious issues .
For the most part, the designers of [SQL] were practical people rather than theoreticians, and
this orientation was reflected in many [design] decisions.” This position is very different from

ours! Nulls and duplicates are.sgfeavific issucs, not religious ones; they are discussed. scientifi-
cally, in this book in Chapters 1¥:and 6, respectively. As for “practical . . . rather than {theoreti-
cal],” we categorically reject the suggestion that theory is not practical; we have already stated
in Section 4.8 our position that relauonal lhcory. at least, is very practical indeed.

4.9 Donald D. Chamberlin and Raymond F. Boyce: “SEQUEL: A Structured English Query Lan-
guage.” Proc. 1974 ACM SIGMOD Workshop on Data Descnpuon. Access, and Control, Ann Arbor,
Mich. (May 1974),

The paper that first introduced the SQL language (or SEQUEL. as it was originally called; the
name was subsequently changed for legal reasons).

4.10 Donald D. Chamberlin et af.: "SEQUEL/2: A Unified Approach to Data Definition. Manipula-
tion, and Control,” 18M J. R&D. 20. No. 6 (Novcmber £976). See also the ermata in [BM J. R&D. 21,
No. 1 (January 1977).

Experience from the early prototype implementation of SEQUEL discussed in reference (4.1)
and results from certain usability tests led to the design of a revised version of the language
called SEQUEL/2. The language supported by System R [4.2, 4.3] was basically SEQUEL2
{with the conspicuous absence of the so-called “assertion™ and “trigger” facilities—see Chapter
9). plus certain extensions suggested by early user experience {4.11].

4.11 Donald D. Chamberlin: “A Summary of User Experience with the SQL Data Sublanguage.”
Proc. Int. Conf. on Databases, Aberdeen, Scotland (July 1980). Also available as IBM Research
Report R12767 (April 1980).

Discusses early user expenence with System R and proposes some extensions to the SQL
language in light of that expcnence Certain of those extensions—EXISTS. LIKE. PREPARE,

"~ and EXECUTE—were in fact implemented in the final version of System R. They are
described in Section 8.6 (E)GSTS) Appendix B (LIKE), and Section 4.7 (PREPARE and
EXECUTE).

4.12 Donald D. Chamberlin et al.: “Support for Repcuuvc Transactions and Ad Hoc Qucnes in Sys-
tem R,”ACM TODS 6, No. | (March 1981).

Gives some measurements of System R pcrformance in both the ad hoc query and *“‘canned
transaction” environments, (A “canned transaction™ is a simple application that accesses only a
small part of the database and is compiled prior to execution time. It comesponds to what we
called a planned request in Chapter 2, Section 2.8.) The paper shows, among other things, that

-

s lye

i T

106 DPartl] Preliminaries

in a system like System R (a) compilation is almost always supetior to interpretation, even for
ad hoc queries, and (b) as long as appropriate indexes exist in the database, many transactions
can be executed per second. The paper is notable because it was one of the first to givc the lie to
the claim, frequently heard at the time, that “relztional systcms will never perform.” Commer-
cial SQL products subsequently achieved transaction rates in the hundreds and even thousands
of transactions per second.

4,13 Donald D. Chamberlin et al.: “A Hxstury and Evaluauon of System R." CACM 24, No. 10
(Qctober 1981).

Describes the three principal phases of the System R pm)cct (preliminary. prototype, multi-user
prototype, evaluation), with emphasis on the technologies of compilation and optimization that
were pioneered in System R. There is some overlap between this paper and reference [4.14].

4.14 Denald D. Chamberlin. Arthur M. Gilbert, and Robert A, Yost: “A History of System R and
SQL/Data System,” Proc. 7th Int. Conf. on Very Large Data Bases, Cannes, France (Sepiember
1981).

Discusses the lessons leamed from the System R prototype and describes the evolution of that
prototype into the first of IBM’s DB2 product farmly. SQL/DS (subsequently renamed “DB2
for VM and VSE").

4.15 C. J. Date: “A Critique of the SQL Database Language.” ACM SIGMOD Record 14, No. 3
(November 1984). Republished in Relational Database: Selected Wrirings, Reading, Mass
Addison-Wesley (1986).

As noted in the body of the chapter, SQL is not perfect. This papcr presents a critical analysis
of a2 number of the language’s principal shortcomings, mainly from the standpoint of formal
computer languages in general rather than database languages specifically. Note: Certain of this
paper’s criticisms do not apply to SQL:1999. Set e
4.16 C.J. Date: “What’s Wrong with SQL?" in Relational Darabase Writings 1985-1 989 Reading,
Mass.: Addison-Wesley (1990).

Discusses some additional shortcomings of SQL. over and above those identified iri reference
{4.15], under the headings “What's Wrong with SQL per se,” “What's Wrong with the SQL
Standard,” and “Application Portability.” Note: Again, certain of this paper’s criticisms do not
apply to SQL:1999.
4.17 C. J, Date: “SQL Dos and Don’ts.” in Relational Database Writings 1985-1989. Reading.
Mass.: Addison-Wesley (1990).

This paper offers some practical advice on how to use SQL in such a way as (a) 1o avoid some
of the potential pitfalls arising from the problems discussed in references {4.15}, [4.16], and
{4.19] and (b) 10 realize the maximum possnblc benefits in terms of productivity, portability,
connectivity, and so forth. '

4.18 C. J. Date: “How We Missed the Relational Boat," in Relational Database Writings 1991~
1994. Reading, Mass.: Addison-Wesley (1995).
A succinct summary of SQL’s shortcomings with respect to its support {or lack thereof) for the
structural, integrity, and manipulative aspects of the relational model. . .
4.19 C. J. Date: “Grievous Bodily Harm" (in two parts), DBP&D 11, No. 5§ (May 1998) and No. 6
(June 1998); “Fifty Ways to Quote Your Query,” hirp://www.dbpd.com (July 1998).
SQL is an extremely redundant language, in the sense that all but the most trivial of queries can
be expressed in many different ways. These papers illustrate this point and discuss some of its

“—_A

PR

Chapter 4 | An Introduction to SQL 107

implications. In particular, they show that the GROUP BY clause, the HAVING clause, and
range variabies could all be dropped from the language with effectively no loss of functionality
(and the same is true of the “IN <subquery>" construct). Note: All of these SQL constructs are
explained in Chapter 8, Section 8.6. :

4.20 C. J. Date and Hugh Darwen: A Guide to the SQL Standard (4th edition). Reading, Mass.:

Addison-Wesley (1997).
A comprehensive tutorial on the SQL standard (1992 version), including SQL/CLI (1995,
SQL/PSM (1996), and a preliminary look at SQL:1999. In particular, the book contains an
appeadix, Appendix D, that documents “many aspects of the standard that appear 10 be inade-
quately defined, or even incorrectly defined, at this time.” Most of the problems identified in
that appendix still exist in SQL:1999.

4.21 C,). Date and Colin J. White: A Guide to DB2 (4th edition). Reading, Mass.; Addason-Wcslcy

(1993).
Provides en extensive and lhurough overview of IBM’s original DB2 product (as of 1993) and
some of its companion prodt:c& DBZ was based on Systcm R. though not as closely as
SQL/DS was {4.14).

4.22 Neal Fishman: “SQL dy Jour" D.BP&D 10, No. 10 (October 1997)

A depressing survey of some of the. mcompaubxhues to be found among SQL products that all

claim to “support the SQL standard.” . '

4.23 International Organization for Standardization (ISO): [nfannanan Technolag_)-Dambase Lan-
guages—SQL, Document ISO/TEC 9075:1999. Note: See also reference {22.21).

The original ISO SQL:1999 definition (known to the cognoscenti as [SO/AEC 9075, or some-
times just /SO 9075). Note, however, that the original monolithic document has since becn
replaced by an open-ended series of separate “parts” (ISOIIEC 9075-1, -2, etc.). At the time of
writing, the following parts have been defined: | -

Part |: Framework (SQIJmecwork)
Part 2: Foundation (SQL/Foundation)
Part 3: Call-Level Interface (SQL/CLI) L o,
Part 4: Persistent Stored Modules (SQL/PSM) ... -~ . . . |
. Part 5: Host Language Bindings (SQUBmclmgs) e R P
Part 6: There is no Part 6 e
Part 7: There is no Part 7 . .
Part 8: There is no Part 8 : T .
" Part 9: Management of External Data (SQL/MED)
Part 10: Object Language Bindings (SQL/OLB) ,
As noted carlier in the chapter, the next edition of the standard is expected jn 2003, ar which
- time the following changcs to the foregoing list are likely: .

B The material from PartS will be folded into Part 2 and Part 5 will be dropped.

= The material from Part2 defining the standard database catalog (the “Informatlon Schema™)
will be moved to a new Part 11, “SQL Schemata.”

B A new Part 13, “Java Routines and Types (SQL/IRT),” will standardize further integration
of Java with SQL (see the annotation to reference (4.7]).

® A pew Part 14, “XML-Related Specifications (SQL/XML),” will standardize features hav-

ing to do with the relationship between SQL and XML (see Chapter 27).

TEan avh s

T e ALY e

R B F Ly

e

108

Part [| Preliminaries

By the way, it is worth mentioning that, although SQL is widely recognized as the interna-
tional “relational™ database standard, the standard document does not describe itself as such; in
fact, it never actually uses the term relation at all! (As mentioned in a foomote earlier in this
chapter, it does not use the term database either, come to that.)

4.24 International Organization for Standardization (ISQ): (ISO Working Draft)—Database Lan-
guage SQL—Technical Corrigendum 5, Document ISO/IEC JTC1/SC32/WG3 (December 2. 2001).

Contains a large number of :évisions and corrections to the specifications of referencé [4.23].
4,25 Raymond A. Lorie and Jean-J acques Daudenarde: SQL and Its Apphcariam Englewood Cliffs.

-N.L: Prentice-Hall (1991).

An SQL “how to" book (almost half the book consists of a detailed series of case studies
involving realistic applications).

4.26 Raymond A. Lorie and J. F. Nilsson: “An Access Specification Language for a Relational Data

Base System.” IBM J. R&D, 23, No. 3 (May 1979).
Gives more details on one particular aspect of the System R compilation mechanism [4.12,
4.27). For any given SQL statement, the System R optimizer generates a program in an inter-
nal language called ASL (Access Specification Language). ASL serves as the interface
between the optimizer and the code generator. (The code generator, as its name implies, con-
verts an ASL program into machine code.) ASL consists of operators such as “scan™ and
“insert” on objects such as indexes and stored files. The purpose of ASL is to make the overail
translation process more manageable, by breaking it down into a set of well-defined subpro-
cesses.

4.27 Raymond A. Lorie and Bradford W. Wade: *The Compilation ut‘ a ngh—Level Data Language.”

[BM Research Report RJ2598 (August 1979). :
System R pioneered a scheme for compiling gueries ahead of run time and then automatically
recompiiing them if the physical database structure had changed significantly in the interim,
This paper describes the System R compilation and recompilation mechanism in some detail,
without however getting into questions of optimization. Scc reference [18.33) fur mfonnanon
on this latter topic.

4.28 Jim Melton and Alan R. Simon: SQL:1999—Understanding Relational Componems Sun Fran-

cisco, Calif.: Morgan Kaufmann (2002)
A mtonal on SQL:1999 (basics only—advanced topics are defetred to reference (26.32]). Mel-
ton is the editor of the SQL standard at the time of writing.

4.29 David Rozenshtein. Anatoly Abramovich, and Eugene Birget: Oprimizing Transact-SQL:

_ Advanced Programming Techniques. Fremont, Callf.: SQL Forum Press (1995).

Transact-SQL is the dialect of SQL supported by the Sybase and SQL Server produc:s This
book presents a series of programming techniques for Transact-SQL based on the use of char-
acteristic functions (defined by the authors as “devices that allow programmers to encode con-
ditional logic as . . . expressions within SELECT, WHERE, GROUP BY, and SET clauses™).
Although expressed m terms of Transact-SQL specifically, the ideas are acmally of wider
applicability. Note: We should perhaps add that the “optimizing” mentioned in the book’s title
refers not to the DBMS optimizer component but rather to “optimizations™ that can be done by
users themselves by hand.

o

THE RELATIONAL MODEL .

The foundation of modern database technology is without question the relational model: it
is that foundation that makes the field a science. Thus, any book on the fundamentals of
database technology that does riot include thorough coverage of the relational model is by
definition shallow. Likewise, any claim to expertise in the database field can hardly be jus-
tified if the claimant does not understand the relational model in depth. Not that the mate-
rial is at all “difficult.” we hasten to add—it'is not—but, 10 fepeat, it is the foundation, and
will remain so for as far out as anyone can see, -

As explained in Chapter 3. the relational model is concemed with three principal
aspects of data: data strucrure, data manipularion, and data integrity. In this part of the
book, we consider each of these aspects in turn:

® Chapters 5 and 6 discuss structure (Chapter 5 deals with rypes and Chapter 6 with
relations).

® Chapters 7 and 8 discuss manipulation (Chapter 7 deals with the relational algebra
and Chapter 8 with the relational calculus).

® Chapter 9 discusses integrity.

- Finally, Chapter 10 discusses the important topic of views. Note: Perhaps we should add
that the division of the relational model into three parts, useful though it can be at a high
conceptual level, tends to break down once we start looking more closely. As you will soon
see, in fact, individual components of the model are highly interconnected and rely on one
another in a variety of ways; thus, it is not possible in general (even in principle) to remove

_any given component without wrecking the entire model. One consequence of this fact is

that Chapters 5-10 include numerous cross-references to one another.

It is also important to understand that the model is not a static thing—it has evolved
and expanded over the years, and it continues to do so.! The text that follows reflects the
current thinking of the author and other workers in this field (in particular, as mentioned
in the preface, it is informed throughout by the ideas of The Third Manifesto {3.3]). The
treatment is meant to be fairly complete, even definitive (as of the time of writing),

! It resembles mathematics in this respect (mathematics is not static, either. but grows over time); in fact,
the relational model can be regarded itself as a small branch of mathematics.

PR S

Rl T

i
A 110

L "
. + 3

LI L

o L

et 4 4 e —

Part I | The Relational Model

though of course it is pedagogic in style, bnt you should not take what follows as the last
word on the subject.

To say it again, the relational model is not hard to understand—but it is a thcory. and
most theories come equlppcd with their own special terminology, and (for reasons
already explained in Section 3.3) the relational model is no exception in this regard. And
we will be using that special terminology in this part of the book, naturaily. However, it
cannot be denied that the terminology can be a little bewildering at first, and indeed can
serve as a barrier to understanding. (This latter fact is particularly unfortunate, given that
the underlying ideas are not really difficult at all.) So, if you are having trouble in under-
standing some of the material that follows, please be patient: you will probably find that
the concepts do become very straightforward, once you have become familiar with the
terminology.

Now, it has to be said that the chapters that follow are very long (they almost form a
book in their own right). But the length reflects the importance of the subject marter! It
would be quite possible to provide an overview of the topic in just one or two pages;
indeed, it is a major strength of the relational model that its basic ideas can be explained
and understood very easily. However, a one- or two-page treatment cannot do.justice to
the subject, nor illustrate its wide range of applicability. The considerable length of this
part of the book should thus be seen, not as a comment on the model’s complexity, but as
a tribute to its importance and its success as a foundation for numerous far-reaching devel-
opmeants. Effort invested in fully understanding the material will repay.the reader many
times over in his or her subsequent database activities.

Finally, a word regarding SQL. We have already said in Part I of this book that SQL
is the standard “relational” database language, and just abodt every database product on
the market supports it {or, more accurately, some dialect of it—see reference {4.22]). As a
consequence, no modern database book would be complete without extensive coverage of
SQL. The chapters that follow on various aspects of the relational model therefore do also
discuss the relevant SQL facilities, where apphcable (they bulld on Chapter 4‘-wh1ch cov~
ers basic SQL concepts).

51 Introduction

52 - Values vs. Variables

5.3 ‘Types vs. Representations

54 TypeDefinition

55 - Operators i

5.6 Type Generators

57 SQL Facilities - .. -

5.8 Summary ’
Exercises

References and Blbhography

51 INTRODUCTION

Note: You might want to give this chapter a “once over lightly” reading on a first pass.
The chapter does logically belong here, bur large parts of the material are not really
needed very much prior to Chapter 20 in Part V and Chapters 25-27 in Part VL.

The data type concept (pe for short) is fundamental every value, every variable,
every parameter, every read-only operator, and in partxcular every relational attribute is of
some type. So what is a type? Among other things, it is a set of values. Examples include
type INTEGER (the set of all integers), type CHAR (the set of all character strings), type
S# (the set of all supplier numbers), and so on. Thus, when we say that, for cxamplc. the
supphcrs relvar S has an attnbutc STATUS of type INTEGER, what we mean is that val-
ues of that attribute are mtcgcrs. and nothing but integers.

Note: Two points arise immediately:

s First, types are also called domains, especially in relational contexts; in fact, we used
this latter term ourselves in earlier editions of this book, but we now prefer fypes.

111

112

Part I | The Relational Model

= Second, a caveat: We are trying to be reasonably precise in this part of the book.
Therefore, instead of saying that, for example, type INTEGER is the set of all inte-
gers, we ought really to say that it is the set of all integers that are capable of repre-
sentation in the computer system under consideration (there will obviously be some
integers that are beyond the representational capability of any given computer sys-
term). An analogous qualification applies to many subsequent statements and exam-
ples in this chapter, as you might expect; we will not bother to spell the point out
explicitly every time, but will let this one caveat do duty for all.

Any given type is either system-defined (i.e., built in) or user-defined. We assume
for the purposes of this chapter that, of the three types mentioned earlier. INTEGER and
CHAR are systcm—deﬁncd and S# is user-defined. Any type whatsoever, regardless of
whether it is system- or user-defined, can be used as the basis for declaring relational
attributes (and variables, parameters, and read-only operators—see Section 3.2).

Any given type has an associated set of operators that can validly be applied to values
of the type in question; that is, values of a given type can be operated upon solely by means
of the operators defined for that type (where by “defined for that type” we mean, precisely.
that the operator in question has a parameter that is declared to be of that type). For exam-
ple. in the case of the system-defined type INTEGER:

x The system provides operators “=", “<", and so on. for comparing integers.

& [t also provides operators “+”, *“x", and so on, for performing arithmetic on integers.

a [t does not provide operators “1{™ (concatenate), SUBSTR (substring),-and so on, for
performing string operations on integers (in other words string operations on integers
are not supportcd)

Bv contrast in the case of the user-defined type S#, we would probably define opera-

%

" tors “=", “<", and so on, for comparing supplier numbers. However, we would probably
- not deﬁm: operators “+". “s”, and so on, which would mean that arithmetic on supplier

numbers would not be supported (why would we ever want to add or multiply two sup-
plier numbers?). _

We now proceed to cxplore the foregoing ideas in depth, using the type thcory of ref-
erence [3.3) as a bas_ls

52 VALUES V5. VARIABLES

The first thing we need to do is pin down the crucial, and fundamental, logical difference’
between values and variables (there is a surprising amount of confusion on this issue in
the literature). Following reference [5.1), we adopt the following definitions:

= A value is an “individual constant”-—~for example, the individual constant that is the
integer 3. A value has no location in time or space. However, values can be repre-
sented in memory by means of some encoding, and such representations, or {our pre-
ferred term) appearances, do have locations in time and space. Indeed, distinct

I See reference {3.3] for an explanation of this useful and important concept.

r —— — —s e — s v

“%f
§
!
%
§
|
z
3
= |
|

Chapter 5 | Types 113

appearances of the same value can exist at any number of distinct locations in time
and space, meaning, loosely, that any number of different variables can have the same
value, at the same time or different times. Note in particular that, by definition, a
value cannot be updated; for if it could, then after such an update it would not be
that value any longer. '

« A variable is a holder for an appearance of a value. A variable does have a location in
time and space. Also, of course, variables, unlike values, can be updated; that is, the
current value of the variable in question can be replaced by another value, probably
different from the previous one. (Of course, the variable in qucsnon is still the same
variable after the update.)

Please note very carefully that it is not just simple things like the integer 3 that are
legitimate values. On the contrary, values can be arbitrarily complex: for example, a value
might be a geometric point, or a polygon, or an X ray, or an XML document, or 2 finger-
print, or an array, or a stack, or a list or a relation (and on and on). Analogous remarks
apply to variables too, of course.-

Next, observe that it is lmportant to distinguish between a value per se, on the one
hand, and an appearance of that value in'some particular context (in particular. as the cur-
rent value of some variable), on the other. As already explained. the very same value can
appear in many different contexts simultaneously. Each of those appearances consists.
internally, of some encoding or physical representation of the value in question: further-
more, those encodings are not necessarily all the same. For example, the integer value 3
occurs exactiy once in the set of integers (there is exactly one integer 3 “in the universe.”
as it were), but any number of variables might simultancously contain an appearance of
that integer as their current value. Furthermore, some of those appearances might be phys-
ically represented by means of (say) a decimal encoding, and others by means of a binary
encoding, of that particular integer. Thus, there is also a logical difference between an
appearance of a value, on the on¢ hand, and the internal encoding or physu:al represen-
tation of that appearance, on the other.

The foregoing remarks notwithstanding, we usually find it convenient. for fmrly obvi-
ous reasons, to abbreviate “encoding of an appearance of a value™ to just “appearance of a

_value,” or {(more often) to just “‘value.” as long as there is no risk of ambiguity in doing so.

Note that “appearance of a value™ is a model concept, whereas “encoding of an appear-
ance” is an implementation concept. For example, users certainly might need to know
whether two distinct variables contain appearances of the same value (i.e., whether they
“compare equal™); however, they do not need to know whether those two appearances
make use of the same physical encoding.

Values and Variables Are Typed |

Every value has (equivaiently, is of) some type. In other words, if v is a value, then v can
be thought of as carrying around with it a kind of flag that announces “I am an integer” or
“I am a supplier number” or “] am a geometric point” {etc.). Note that, by definition, any

NP

i
.

et e e o o el i

Part IT | The Relational Model

given value always has exactly one type,2 which never changes. It follows that distinct
types are disjoint, meaning they have no values in common. Moreover:

= Every variable is explicitly declared to be of some type, meaning that every possible
value of the variable in question is a value of the type in question.

u Every attribute of every relvar—see Chapter 6—is explicitly declared to be of some
type, meaning that every possible value of the attribute in queéstion is a value of the
type in question. - T

w Every operator—see Section 5.5—that returns a result is explicitly declared to be of
some type, meaning that every possible result that can be returned by an invocation of
the operator in question is a value of the type in question.

» Every parameter of every. operator—again, see Section 5.5—is explicitly declared to
be of some type, meaning that every possible argument that can be substituted for the
- parameter in question is a value of the type in question. (Actually, this statement is
not quite precise enough. Operatars in general fall into twe disjoint classes, read-only
vs. update operators; read-only operators return a result, while update operators
update one or more of their arguments instead. For an update operator, any argument
that is subject to update is required to be a variable, not a value, of the same type as
the corresponding parameter.)

» More generally, every expression is at least implicitly declared to be of some type:
namely, the type declared for the outermost operator involved, where by “outermost
operator” we mean the operator executed last in the evaluation of the expression in
question. For example, the declared type of the expression a * (b + ¢) is the deciared
type of the opcrator “+" (multiply). :

As an aside, we observe that the foregoing rema.rks concemmg operators and opera-

* tor parameters need some slight refinement if the operators in question are polymorphxc

An operator is said to be polymorphic if it is defined in terms of some paramc{er!’ and the
arguments corresponding to P can be of different types on different invocations. The
equality operator “=" is an obvious example: We can test any two values v/ and v2 for
equality (just as long as v/ and v2 are of the same type), and so “=" is polymorphic—it
applies to integers, and to character strings, and to supplier numbers, and in fact to values
of every possible type. Analogous remarks apply to the assignment operator *:=" (which
is also defined for every type): We can assign any value v to any variable V, just as long as
v and V are of the same type. (Of course, the assignment will fail if it- vmlates some integ-
rity constraint—see Chapter 9—nbut it cannot fail on a type error as such. 3) We will meet
further examples of polymorphic operators in Chapter 20 and elsewhere.

2 Except possibly if type inheritance is supported, a possibility we ignore unti]l Chapter 20.

3 More precisely, it cannot fail on & type etror at run time. We are assuming here, reasonsbly enough, that
the system does do “static” or compile-time type checking; clearly, 2 run-time efror cannot occur if the
compile-time check succeeds,

53 TYPES VS. REPRESENTATIONS

We have already touched on the fact that there is a logical difference between a type per
se, on the one hand, and the physical representation of values of that type inside the sys-
tem, on- the other. In fact, types are a model issue, while physical representations are an
implementation issue. For example, supplier numbers might be physically represented as
- character strings, but it does not follow that we can perform character string operations on
supplier numbers; rather, we can perform such operations only if appropriate operators
have been defined for the type. And the operators we define for a given type will nawrally
depend on the intended meaning of the type in question, not on the way values of that type
happen to be physically represented—indeed, those physical representations should be
hidden from the user. In other words, the distinction we draw between type and physical
representation is one important aspect of data independence (see Chapter 1),
We note in passing that data types (especially user-defined ones) are sometimes
. called abstract data types or ADTs, in the literature, to stress the foregoing point: the
point, that is, that types must be distinguished from their physical representation. We do
not use this term ourselves, however, biecause it suggests there might be some types that
are not “abstract” in this sense, and we believe a distinction should always be drawn
berween a type and its physical representation;

"
A

Scalar vs. Nonscalar Types
Any given t)’plt': is either scalar ornonscalar: - - R

= A nonscalar type is a type whose values are explicitly defined to have a set of user-
visible, directly accessible components. In particular, relation types (see Chapter 6)
are nonscalar in this sense. since relations have both tuples and atiributes as user-
visible components. (Moreover, tuple types are nonscalar in wm, since wples have
attribute values as user-visible components.) e

A scalar type is a type that is not nonscalar (!). Note: The terms encapsulated and
atomic are also sometimes used instead of scalar: atomic in particular tends to be
used in relational contexts (including earlier editions of this book). Regarding encap-
sulated, see Chapter 25. . '

Values of type T are scalar or nonscalar according ‘as T is scalar or nonscalar: thus, a
nonscalar value has a set of user-visible components, while a scalar value does not. Anal-
ogous remarks apply to variables, attributes, operators, parameters, and expressions in
general, mutatis mutandis.

Possible Representatipris, Selectors, and THE_ Operators

Let T be a scalar type. We have seen that the physical representation of values of type T is
hidden from the user. In fact, such representations can be arbitrarily complex-—in particu-
lar, they can certainly have components—but, to repeat, any such components will be hid- -
den from the user. However, we do require that values of type T have at least one possible

116

Part Il | The Relational Mode!

of those possible representations in turn has two components, both of which are of type

_ is still scalar—it has no user-visible componeants.

representation® (declared as part of the definition of type T), and such possible represen-
tations are not hidden from the user: in particular, they have user-visible components.
Understand, however, that the components in question are nor components of the type.
they are components of the possible representation—the type as such is still scalar in the
sense already explained. By way of illustration, consider the user-defined type QTY
(“quantity™), whose definition in Tutorial D might look like this: . A .

TYPE QTY POSSREP { INTEGER ‘} ’

This type definition says, in effect, that quantities can “possibly be represented™ by
integers. Thus, the declared possible representation (“possrep™) certainly does have user-
visible components—in fact, it has exactly one such, of type INTEGER~but quantities
per se do not. -

Here is another example to illustrate the same point:

TYPE POINT ' /* geomstric points in two-dimensjonal space */
- POSSREP CARTESIAN { X RATIONAL, Y RATIONAL }
-POSSREP POLAR { R RATIONAL, 6 RATIONAL } ;

The definition of type POINT here includes declarations of two distinct possible rep-
resentations, CARTESIAN and POLAR, reflecting the fact that points in two-dimensional
space can indeed “possibly be represented” by either Cartesian or polar coordinates. Each

RATIONAL.? Note carefully, however, that (to spell it out once again) type POINT per se

Svntax: We adopt the convention that if a given type T has a possible representation
with no explicit name, then that possible representation is named T by default, We also
adopt the convention that if a given possible representation PR has a component with no
explicit name, then that component is named PR by default. In addition, each POSSREP

declaration causes automatic definition of the following more or less self-explanatory
operators: .. - ’

® A selector operator, which allows the user to specify or select a value of the type in
question by supplying a value for each component of the possible representation

® A set of THE_ operators (one such for each component of the possible representa-
tion), which allow the user to access the corresponding possible-representation com-
ponents of values of the type in question

Nore: When we say a POSSREP declaration causes “automatic definition” of these opera-
tors, we mean that whatever agcncy—anSSiny the system. pOSSibly some humanuser—-—is

responsible for implementing the type in question is also responsible for implementing the
operators.

* Unless type T'is a “dummy type"” (see Chapter 20).

3 Tutorial D uses the more accurate RATIONAL over the more familiar REAL. We remark in passing
that RATIONAL might well be an example of a built-in type with more than one declared possible repre-
sentation. For example. the expressions 530.00 and 5.3E2 might well denote the same RATIONAL
valuc—that is, they might constitute distinct, but equivalent, mvocations of two distinct RATIONAL
selectars (see subsequent discussion).

—— e d

Chapter5 | Types 117

Here by way of example are some sample selector and THE _ operator invocations for
type POINT:

CARTESIAN (5.0, 2.5)
/* selects the point with x = 5.0, y = 2.5 #/
CARTESIAN (X1, Y1)

/* selects the point with x = X1, Y = Y1, where +/
/* X1 and ¥1 are variables of type RATIONAL */
POLAR { 2.7, 1.0)

/* selects the point with r = 2,7,,8 = 1,0 */

THE X (P)

/* denotes the x coordinate of the pojiant in */

/* P, where P is a variable of type POINT */

THE R (P)

/* denotes the r coordinate of the polnt in P */

THE Y (exp) '
/* denotes the y coordinate of the point denoted ¢/
/* by the expression exp. (which is of type POINT) */

v

Note that (a) selectors have the: same name as the corresponding possible representa-

tion: (b) THE_ operators have names of the form THE_C, where C is the name of the cor-*

responding component of the corresponding possible representation. Note too that selec-
tors—or, more precisely, selector invocarions—are a generalization of the more familiar
concept of a literal (all literals are selector invocations, but not all selector invocations are
literals: in fact, a selector invocation is a literal if and only if all of its arguments are liter-
als in tum).

To see how the foregoing might work in practice, suppose the physical representation
of points is in fact Cartesian coordinates (though there is no need, in general, for a physical
representation to be identical to any of the declared possible ones). Then the system will
provide certain highly protected operators, denoted in what follows by italic pseudocode,
that effectively expose that physical representation, and the type implementer will use those

operators to implement the necessary CARTESIAN and POLAR selectors. {Obviously the -

type implementer is—in fact, must be—-an exception to the general rule that users are not
aware of physical representanons) For example:

CPERATOR CARTESIAN (X RATIONAL, ¥ RATIONAL) RETURNS POINT :
BEGIN ;
VAR P POINT ; /* P is a varjable of type POINT */
X component of physical representation of P 1= X ;
Y component of physical representation of P 1= Y ;

. RETURN { P 1} ;
. END ;
»~ END OPERATOR ;

OPERATOR POLAR (R RATIONAL, 6 RATIONAL) RETURNS POINT ;
RETURN(CARTBSIAN(R*COS(6),R*SIN(9)));
END OPERATOR

Observe that the POLAR definition makes use of the CARTESIAN selector. as well

as the (presumnably built-in) operators SIN and COS. Alternatively, the POLAR definition
could be expressed directly in terms of the protected operators, as follows:

.= —

P S

S i we oy .
- e

| 24

Part I | The Relational Model o

OPERATOR POLAR { R RATIONAL, 8 RATIONAL } RETURNS POINT ;
BEGIN ;
VAR P POINT ; - '
X component of physical representation of P
t= R * COS (8) ;
Y component of physical representation.of P
" iw R *SIN({8)

e

RETURN (P) :
END ;
END OPERATOR ;

The type implementer will also use those protected operators t6 implement the neces-
sary THE_ operators, thus: :
OPERATOR THE_X (P POINT) RETURNS RATIONAL ;

RETURN (X component of physical representation of P)
END OPERATOR ;

OPERATOR THE Y (P POINT) RETURNS RATIONAL ;
RETURN { Y component of physical representation of P)
END OPERATOR ;

OPERATOR THE R (P POINT) RETURNS RATIONAL ; S
RETURN (SQRT (THE_X (P) ** 2 + THE Y (P) ** 2))
END OPERATOR ; ,

OPERATOR THE 8 (P POINT) RETURNS RATIONAL ;
RETURN (ARCTAN (THE_ Y (P) / THEX (P)))
END OPERATOR ;

Observe that the definitions of THE_R and THE_8 make use of THE_X and THE_Y,
as well as the (presumably built-in) operators SQRT and ARCTAN. Alternatively, THE_R
and THE_8 could be defined directly in terms of the protected operntors (details left as an
exercise). ' . . ' ,

So much for the POINT example. However, it is important to understand that all of the
concepts discussed apply to simpler types as well®—for example, type QTY. Here are some
sample selector invocations for that type: .

~a

-

-

QTY (100)
QTY (N)
QTY (N1 -~ N2)

And here are some sample THE_ operator invocations:
THE QTY { Q)
TEE_QTY (Q1 - Q2)

Note: We are assuming in these examples that (a) N, N1, and N2 are variables of type
INTEGER, (b) Q. Q!l. and Q2 are variables of type QTY, and (c) “~" is a polymorphic
operator-—it applies to both integers and quantities. .

Now, since values are always typed, it is strictly incorrect to say that (e.g.) the quan-
tity for a certain shipment is 100. A quantity is a value of type QTY, not a value of type

6 Including built-in types in particular, although (partly for historical reasons) the corresponding selectocs
and THE._ operators might deviate somewhat from the syntactic and other rules we have prescribed in this
section. See reference [3.3] for further discussion.

Chapter5 [Types 119

INTEGER! For the shipment in question, therefore, we should more properly say the
quantity is QTY(100), not simply 100 as such, In informal contexts, however, we usually
do not bother to be quite as precise, thus using (e.g.) 100 as a convenient shorthand for
QTY(100). Note in particular that we have used such shorthands in the suppliers-and-
parts and suppliers-parts-projects databases (see Figs. 3.8 and 4.5, both repeated on the
inside back cover). :

We give one further example of a type dcﬁmnon

TYPE LINESEG POSSREP (BBGIN POINT, END POINT } ;

Type LINESEG denotes line segments. The example lllustrates the point that a given possi-
ble representauon can be defined in terms of user-defined types, not just system-defined
types as in all of our previous examples (in other words, a user-defined type is indeed a
type).

Finally, note that all of our examples in this subsectlon on possnble representations
and related matters have involved scalar types spcc:ﬁcally However, nonscalar types have
possible representations, too. We wall return to this issue in Section 5.6.

- 54 TYPE DEFINITION ST

" New types can be introduced in 'I‘utorial D either by means of the TYPE statement
already illustrated in several examples in previous sections or by means of some fype gen-
erator. We defer discussion of type generators, and the related quesuon of how to detine
nonscalar types, 10 Section 5.6; in this section, we discuss the TYPE staiement specifi-
cally Here by way of example is a definition for the scalar type WEIGHT

' TYPE WEIGHT POSSREP (D DECIMAL (5,1).
cnns'rmn'rn>oowno<5oooo } o3

Explanation: Welghts can possnbly be represented by decimal numbers of five digits
precision with one digit after the decimal point, where the decimal number in question is
greater than zero and less than 5,000. Note: The foregomg sentence in its entirety consti-
tutes a type constraint for type WEIGHT. In general, a type constraint for type T is, pre-
cisely, a definition of the set of values that make up type T. If a given POSSREP
declaration contains no explicit CONSTRAINT specification, then CONSTRAINT TRUE
is assumed by default (in the example, omitting the CONSTRAINT specification would
thus mean that valid WEIGHT values are precisely those that can be represented by deci-
mal numbers of five digits precision with one digit after the decimal point).

The WEIGHT example raises another point, however. In Chapter 3, Section 3.9, we
said part weights were given-in pounds. But it might not be a good idea to bundle the type
notion per se with the somewhat separate unirs notion (where by the term unirs we mean
units of measure). Indeed, following reference [3.3], we can allow users to think of weights
as being measured either in pounds or in (say) grams, by providing a distinct possible rep-
resentation for each, thus: ‘

l
|

ORI RS FPRIRPTY |

126 Part [l [The Relational Model

TYPE WEIGHT
POSSREP L85 { L DECIMAL (5,1)
CONSTRAINT L > 0.0 AND L < 5000.0 }
POSSREP GMS { G DECIMAL (7,1)
: CONSTRAINT G > 0.0 AND G < 2270000.0
AND MOD { G, 45.4)} = 0.0 } ;
Note that both POSSREP declarations include a CONSTRAINT specification, and
those two specifications are logically equivalent (MOD is an operator that takes two
numeric operands and retumns the remainder that results after dividing the first by the sec-

ond; we are assuming for simplicity that one pound = 454 grams). Given this definition:

= If W is an expression of type WEIGHT, then THE_L(W) will return 2 DECIMAL
(5.1) value denoting the corresponding weight in pounds, while THE_G(W) will
return a DECIMAL(7.1) value denoting the same weight in grams.

x If N is an expression of type DECIMAL(S,1), then the expressions LBS(N) and
GMS(454*N) will both return the same WEIGHT value.

Here then is the Tutorial D syntax for déﬁning a scalar type:

<type def>
tt= TPTYPE <type name> <possrep def list> ;

<possrep der>
::= POSSREP (<possrep name> |
{ <possrep component def commal;st>
[<possrep constraint derf>] }

<possreu component def>
.t:= . [*<possSrep component name>] <type name>

“<possreép constraint def>

ce.l 13m - CONSTRAINT <bool exp> _ A

Points arising from this syntax (most of which are ﬂIus::ated by the two WEIGH’I‘
examples shown earlier):

1. The syntax makes use of both lists and commalists. The term commalist was ‘deﬁncd
in Chapter 4 (Section 4.6); the term list is defined analogously, as follows. Let <xyz>
denote an arbitrary syntactic category (i.e., anything that appears on the left side of
some BNF production rule). Then the expression <xyz lisz> denotes a sequence of
zero or more <xyz>s in which each pair of adjacent <.r_vz>s is separated by one or
morce blanks.

2. The <possrep def list> must contain at least one <possrep def>. The <poassrep com-
ponent def commalist> must contain at least one <possrep component def>.

3. Brackets “[" and "]” indicate that the material they enclose is optional (as is normal
with BNF notation). By contrast, braces “{" and "}" stand for themselves: that is,
they are symbols in the language being defined, not (as they usually are) symbols of
the metalanguage. To be specific, we use braces to enclose commalists of items when
the commalist in question is intended to denote a set of some kind (implying among

i
5
é
i
k]
M
4
|
1
L]

1

1

H

i

i
3
4
4
.__g
3
&
w1

T AT P e

Chapter5 [Types 121

other things that the order in which the items appear within the commalist is immate-
rial, and implying also that no item can appear more than once).

4, In general, a <bool exp> (“‘boolean expression™) is an expression that denotes a truth

* value (TRUE or FALSE). In the context at hand, the <bool exp> must not mention

" any variables, but <possrep component name>s from the containing <possrep def>

can be used to denote the comresponding components of the applicable possible repre-

sentation of an arbitrary value of the scalar type in question. Note: Boolean expres-
sions are also called conditional, truth-valued, or logical expressions.

5. Observe that <fvpe def>s have absolutely nothing to say. about physical representa-
tions. Rather, such representations must be specified as part of the conceptual/internal
mapping (see Chapter 2, Section 2.6).

6. Defining a new type causes the system to make an eatry in the catalog to describe that
new type (refer to Chapter 3, Section 3.6, if you need to refresh your memory regard-
ing the catalog). Analogous ;cmarks apply to operator definitions also (see Section
5.5). ;

Here for future reference are definitions for the scalar types used in the suppliers-
and-parts database (except for type.. WEIGHT, which has already been discussed).
CONSTRA[NT specifications are omitted for’ s:mphcny

TYPE 54 POSSREP { CHAR)

TYPE NAME POSSREP { CHAR }

TYPE P# POSSREP { CHAR }

TYPE COLOR POSSREP { CHAR)}
TYPE QTY POSSREP { INTEGER)} ;

(Recall from Chaptef 3 that the supplier STATUS attribute and the supplier and part CITY
attributes are defined m terms of built-in types instead of user-defined ones, so no type det-

initions are shown corresponding to these attributes.)
Of course, it must also be possible to get rid of a type if we have no further use for it:

ws ha wa we

DROP TYPE <type name> ; S

The <fype name> must identify a user-defined type. not a built-in one. The operation causes
the catalog entry describing the type to be deleted, meaning the type in question is no
longer knowa to the system. For simplicity, we assume that DROP TYPE will fail if the
type in question is still being used somewhere—in particular, if some attribute of some rel-
var somewhere is defined on it.

~ We close this section by pointing out that the operation of defining a type does not
acfually create the corresponding set of values; conceptually, those values already exist,
and always will exist (think of type INTEGER, for example). Thus, all the “define type”
operation—for example, the TYPE statement, in Tutorial D—really does is introduce a
name by which that set of vaiues can be referenced, Likewise, the DROP TYPE statement
does not actually drop the corresponding values, it merely drops the name that was intro-
duced by the corresponding TYPE statement. -

122 Part I { The Relational Model

5.5 OPERATORS

.

All of the operator definitions we have seen in this chapter so far have been either for
selectors or for THE_ operators; now we take a look at operator definitions in general.
Our first example shows a user-defined operator, ABS, for the built-in type RATIONAL:

OPERATOR ABS (% RATIONAL) RETURNS RATIONAL ;
- RETURN (CASE
WHEN 2 2 0.0 THEN +2
WHEN 2 < 0.0 THEN -3
ENO CASE) ;
END OPERATOR ;

Operator ABS (“absolute value™) is defined in terms of just one parameter, Z, of type
RATIONAL, and returns a result of that same type. Thus, an invocation of ABS—-for exam-
ple, ABS (AMT1 + AMT2)—is, by definition, an expression of type RATIONAL.

The next example, DIST (“distance between™), takes two parameters of one user-
defined type (POINT) and returns a result of another (LENGTH): -

OPERATOR DIST (Pl POINT, P2 POINT) RETURNS LENGTH ;
RETURN (WITH THE X (Pl) AS X1 ,
THE X (P2) AS X2 ,
THE Y (Pl) AS Y1 ,
THE Y (P2) AS Y2 :
(
+ |

LENGTH (TSQRT ((XL - X2) v 2
YL -Y2) *#*2)));

LIPPEPLTT IY

END OPERATOR ;

We are assuming that the LENGTH selector takes an argument of type RATIONAL. Also,

note the use of a WITH clause to introduce names for the results of' certain subexpressions. i

We will be making heavy use of this construct in the chapters to come. |
Our next example is the required “=" (equality’) comparison operator for type POINT:

aden

OPERATOR EQ (P1 POINT, P2 POINT } RETURNS BOOLEAN ; .
RETURN (THE X (P1) = THE X { P2)} AND -
Tazx(n)-ms_r(n));

END OPERATOR H

aaidic @ sei

Observe that the expression in the RETURN statement here makes use of the built-in “="
operator for type RATIONAL. For simplicity, we will assume from this point forward that
the usual infix notation “=" can be used for the equality operator (for all types, that is, not 1
just type POINT); we omit consideration of how such an infix notation might be specified
In practice, since it is basically just a matter of syntax, .

Here is the “>" operator for type QTY:

OPERATOR GT (Q1 QTY, Q2 QTY) RETURNS BOOLEAN ;
RETURN' (- THE QTY (Q1) > THE QTY (Q2)) 3
END OPERATOR ;

The expression in the RETURN statement here makes use of the built-in *>" operator for
type INTEGER. Again, we will assume from this point forward that the usual infix nota-
tion can be used for this operator—for all “ordinal types,” that is, not just type QTY. (An

7 Our* “equality™ operator might better be called identity, since v/ = v2 is true if and only if v/ and v2 are
in fact the very same value.

e

Chapter5 [Types 123

ordinal type is, by definition, a type to which “>" applies. A simple example of a “nonor-
dinal” type is POINT.) ,

Here finally is an example of an update operator deﬁmuon (all previous examples have
been of read—anly operators, which are not allowed to update anything except possibly
local variables).? As you can see, the definition involves an UPDATES specification instead
of a RETURNS specification; update operators do not return a value and must be invoked
by explicit CALLs [3.3].)

OPERATOR REFLECT (P POINT)} UPDATES P
BEGIN ;
THE X (P) 3= = THE X (P)
THE Y (P) = = THE_ Y (P)
RETURN ; - ‘
END ;
END OPERATOR ;

b

-e

The REFLECT operator effectively moves the point with Cartesian coordinates (x.y) to the
inverse position (=x.~¥); it does this by updating its point argument appropriately, Note the
use of THE_ pseudovanahles jrithis example. A THE_ pseudovariable is an invocation of
a THE _ operator in a target posuion (in particular, on the left side of an assignment). Such
an invocation actually designates—rather than just returning the value of—the specified
component of (the applicable.: posszble representation of) us argument. Within the
REFLECT definition, for instance, the assignment

-

THE_ X (P) 1= e 3

\

actually assigns a value to the X component of (the Cartesian possible representation of)

the argument variable correspondiag to the parameter P. Of course, any argument to be

updated by an update operator—by assignment to a THE_ pseudovariable in particular—

must be specified as a variable specifically, not as some more general expressxon
Pseudovariables can be nested, as here:

VAR ‘LS LINESEG ; .
THE X (THE_BEGIN (LS)) 1~ 6.5 ;.

We now observc thnt THE_ pseudovnnables are m fact loglcal!y unneccssary Con-
snder the following assignment once again: .

THE X (P) 1= - THE X (P) 3’
This assignment, which uses a pseudovariable; is logically equivalent to the following one,
which does not: _ '

P := CARTESIAN (/- THEX (P), THEY (P)) ;

Similarly, the assignment

- THE_X (Tuz_aquﬁ (LS)) = 6.5

i$ logically equivalent to this one:
8 Read-only and update operators are also known as observers and mutators, respectively, especially in

object systems (see Chapter 25). Function is another synonym for read-only operator (and is occasionally
used as such in this book).

124 Part IT [The Relational Model

LS := LINESEG (CARTESIAN (6.5,
: THE_ Y (THE BEGIN (LS))) ,
THE_END (LS)}) ;

In other words, pseudovariables per se are not strictly necessary in order to support
the kind of component-level updating we are discussing here. However, the pseudovari-
able approach does seem intuitively more attractive than the alternative (for which it can
be regarded as a shorthand); moreover, it also provides a higher degree of imperviousaess
to changes in the syntax of the corresponding selector. (It might also be easier to imple-
ment efficiendy.)

While we are on the subject of shorthands, we should point out that the only update
operator that is logically necessary is in fact assignment (*:="); all other update operators
can be defined in terms of assignment alone (as in fact we already know from Chapter 3, in
the case of relational update operators in particular). However, we do require support for a
multiple form of assignment. which allows any number of individual assignments to be
performed “simultaneously” [3.3]. For example, we could replace the two assignments in
the definition of the operator REFLECT by the following multiple assignment:

THE X (P) = -THEX (P) ,
THE™Y (P) 1= - THE Y (P) :

i

(note the comma separator). The semantics are as follows: First. all of the source expres-
sions on the right sides are evaluated; second, all of the individual assignments are then
executed in sequence as written.? Nore: Since multiple assignment is considered to be a
single operation, no integrity checking is performed “in the middle of* such an assignment:
" indeed. this fact is the major reason why we require muitiple assignment support in the first
place. See Chapters 9 and 16 for further discussion. , _
Finally. it must be possible to get rid of an operator if we have no further use for it. For
example: . .. -, . :

ORI MO M ST 7 A i P v i TR S s S D S

DROP OPERATOR REFLECT ;

The specified operator must be user-defined, not built in.

Type Conversions’
. Consider the foliowing type definition once again:
TYPE 54 POSSREP { CHAR } ;
By default, the possible representation here has the inherited name S&, and hence the corre-
sponding selector operator does, too. The following is thus a valid selector invocation:
s# (*s1*) '
(it returns a certain supplier number), Note, therefore, that the S# selector might be
regarded, loosely, as a type conversion operator that converts character strings to supplier

% This definition requires some refinement in the case where two or more of the individual assignments
refer to the same target variable. The details are beyond the scope of this book: suffice it to say they are

. carefully specified to give the desired result when—as in the exaniple, in fact—distinct individual assign-
menits update distinct parts of the same target variable (2n important special case).

Chapter5 [Types 125 .

aumbers. Analogously, the P# selector might be regarded as a conversion operator that con-
verts character strings to part numbers; the QTY selector might be regarded as a conversion
operator that converts integers to quantities; and so on. -

By the same token, THE_ operators might be regarded as operators that perform type
conversion in the opposite direction. For example, recall the definition of type WEIGHT -
from the beginning of Section 5.4: .

TYPE WEIGHT POSSREP { b DECIMAL (5,1) -
CONSTRAINT D > 0.0 AND D < 5000.0 } ;

If W is of type WEIGHT, then the expression
THE D (W)

effectively converts the weight denoted by W to a DECIMAL(S, 1) number.

Now, we said in Section 5.2 that (a) the source and target in an assignment must be of
the same type, and (b} the comparands in an equality comparison must be of the same type.
In some systems, however, these rules are not directly enforced: thus, it might be possible -
in such a system to request, for cxamp[c. a comparison between a part number and a char-
acter string—in a WHERE clause, perhaps; as here:

... WHERE P# = 'P2' S

Here the left comparand is of type P# and the right comparand is of type CHAR; on the face
of it, therefore, the comparison should fail on a type error (a compile-rime type error. in
fact). Conceptually, however, what happens is that the systein realizes that it can use the P#
“conversion operator” (in other words, the P# selector) to convert the CHAR comparand to
type P#, and so it effectively rewrites the comparison as follows:

C
e et e

%a
}
:;:
3
|
.
g,
'}
I E
b
!
£
4
i
&
i
-

.. WHERE P} = Pt ('P2')

The comparison is now valid.

Invoking a conversion ppcratof implicitly in this way is known as coercion. However,
it is well known that coercion can lead to program bugs. For that reason, we adopt the con-
servative position in this book that coercions are not permitted—operands must always be
of the appropriate types. not merely coercible to those types. Of course, we do allow type
conversion operators (or “CAST” operators, as they are usually called) to be defined and
invoked explicitly when necessary—for example: '

CAST_AS_CHAR { 530.00)

As we have already pointed out. selectors (at least, those that take just one argument) can
" also be thought of as explicit conversion operators, of a kind.

Now, you might have realized that what we are talking about here is what is known in
programming language circles as strong typing. Different writers have slightly different
definitions for this term; as we use it, however, it means, among other things, that (a) every
value Aas a type, and (b) whenever we Iry to perform an operation, the system checks that

 the operands are of the right types for the operation in question. For example, consider the
- following expressions:

1

Y1126

AR b S Al U SR PPL Y S S

L e R T

.

B T -

S

IEATLF N O

Ty oo

AP AT F e aR T

Part IT | The Relational Model

WEIGHT + QTY /* e.g., part weight pluz shipment quantity */
WEIGHT * QTY /* e.qg., part weight ti'més shipment quantity */

The first of these expressions makes no sense, and the system should reject it. The
second, on the other hand, does make sense—it denotes the total weight for all parts
involved in the shipment. So the operators we would define for weights and quantmcs in
combination would presumably include “#" but not “+".

Here are a couple more examples, mvolvmg comparison operations this time:

WEIGHT > QTY
EVEN > ODD

(In the second example, we are assuming that EVEN is of type EVEN_INTEGER and
ODD is of type ODD_INTEGER, with the obvious semantics.) Again, then, the first
expression makes no sense, but the second does make sense. So the operators we would
define for weights and quantities in combination prcsumably would not include ‘>, but
those for even and odd integers presumably would.'® (With respect to this question of
deciding which operators are valid for which types, incidentally, we note that historically
most of the database literature—the first few editions of this book included—considered
comparison operators only and ignored other operators, such as “+” and “»".}

Concluding Remarks

Complete support for operators along the lines sketched in the present section has a num-
ber of significant implications, which we briefly summarize here;”

® First, and most important, it means the system will know (a) cxat':tlir which expres-
sions are valid, and (b) the type of the resuit for each such valid expression.

= It also means that the total collection of types for a given database will be aclosed
set—that is, the type of the result of every valid expression will be a type that is
known to the system. Observe in particular that this closed set of types must include
the type boolean or truth value, if comparisons are to bé valid expressions!

" In‘particular. the fact that the system knows the type of the result of every valid expres-
sion means it knows which assignments are valid, and also which comparisons.

We close this section with a forward reference. We have claimed that what the rela-
tional community has historically called domains are really data types, system- ‘or user-
defined, of arbitrary internal coraplexity, whose values can be operated on solely by
means of the operators defined for the type in question (and whose physical representation
is therefore hidden from the user), Now, if we turn our attention for a moment to object
systems, we find that the most fundamental object concept, the object class, is really a
data type, system- or user-defined, of arbitrary internal complexity, whose values can be
operated on solely by means of the operators defined for the type in question (and whose
physical representation is therefore hidden from the user). .. In other words, domains and

"0 In practice EVEN_INTEGER and ODD_INTEGER might both be subtypes of type INTEGER, in
which case the “>" operator would probably be inherited from this latter type (see Chapter 20).

Chapter5 [Types 127

object classes are the same thing!—and so we have here the key 1o marrying the two tech-
nologies (relations and ObJECtS) togethcr We will elaborate on this important issue in
Chapter 26 : ‘

;

5.6 TYPE GENERATORS

We turn now to types that are not defined by means of the TYPE statement but are
obtained by invoking some type generator. Abstractly, a type generator is just a special
kind of operator: it is special because it returns a type instead of, for example, a simple
scalar value. Ina conveutioual programming language, for example, we might write

VAR SALES ARRAY INTEGER [12] :

to define a variable called SALES whose valid values are one-dimensional arrays of 12
integers. In this example, the expncfsmn ARRAY INTEGER [12] can be regarded as an
invocation of the ARRAY type generator, and it returns a specific array type. That specific
array type is a generated type. Points ansmg

1. Type generators are known by’ many dtﬂ'ercnt names in the literature, including fvpe
constructors, paramelerized hpes, pahmorphw types. type :emplare: and generic
types. We will stay with the term type generator.

Generated types are indeed types, and can be used wherever ordmary nongeneratcd“
types can be used. For example, we might define some relvar to have some attribute
of type ARRAY INTEGER [12]. By contrast, type generators as such are not types.
3. Most generated types, though not all, will be nonscalar types specifically (array types
are a case in poiat). As promised ia Section 5.4, therefore, we have now shown how
4 nonscalar types might be defined. Nore: While it might be possible to define non-
' scalar types without directly invoking some type genemtor. we do not consndcr sucha
possibility any further in this book. ' -

4, For definiteness, we regard generated types as :ystem-deﬁned types specxﬁcnlly, since
they are obtained by invoking a system-defined type generator. Note: Actually we are
oversimplifying slightly here. In particular, we do not rule out the possibility of users
being able to define their own type generators. However, we do not consider such a
possibility any further i in this book. :

Now, generated types clea:ly have possible representations (“possreps” for short) that
are derived in the obvious way from (a) a generic possrep that applies to the type genera-
tor in question and (b) the specific possrep(s) of the user-visible component(s) of the spe-
cific generated type in quesuon In the case of ARRAY INTEGER {12}, for example:

10

s There will be some genenc possrep defined for one-dimensional arrays in general,
, probably as a contiguous sequence of array elements that can be identified by sub-
scripts in the range from lower to upper (where lower and upper are the applicable
bounds~—1 and 12, in our example).

g
A,

ag.:i %

2 By

o
R R R
Rk

T

|

© 128

Part II | The Relational Model

® The user-visible components are precisely the 12 array elements just mentioned, and
they have whatever possrep(s) are defined for type INTEGER.

In like manner, there will be operators that prowde the requnrcd selector and THE_
operator functionality. For example, the expression

ARRAY INTREGER (2, S5, 9%, 9r 15, 27, 33, 32, 25, 19, 5, 1)

-—an array literal, in fact—might be used to specify a particular value of type ARRAY
INTEGER [12] (“selector functionality’). Likewise, the expression

SALES [3])

might be used to access the third component (i.e., the third array element) of the array value
that happens to be the current value of the array variable SALES (“THE_ operator func-
tionality™). It might also be used as a pseudovariable.

Assignment and equality corparison operators also apply. For example, here is a valid
assignment:

SALES := ARRAY INTEGER (2, S5, 9, 9, 15, 27,
A 33, 32, 25,19, S5, 1) ;

And bere is a valid equality comparison:

SALES = ARRAY INTEGER (2, 5, 9%, 9, 15, 27,
33, 32, 25, 19, 5, 1)

Note: Any given type generator will also have a set of generic constraints and opera-
tors associated with it (generic, in the sense that the coastraints and operators in question
will apply to every specific type obtained via invocation of the type generator in question).
For example. in the case of the ARRAY type generator:

® There might be a generic constraint to the effect that the lower bound lower must not
be greater than the upper bound upper

® There might be a generic “reverse™ operator that takes an arbltr:u'y one-dtmensloual
array as input and returns as output another such array contammg the elements of the
given one m reverse order,

(In fact. the “selectors,” “THE_ operators,” and assignment and equality comparison oper-
ators discussed previously are also effectively derived from certain generic operators.)

Note finally that two type generators that are of particular importance in the relational
world are TUPLE and RELATION. They are discussed in detail in the next chapter.

5.7 SQL FACILITIES

“

Built-In Types

SQL provides the following more or less self-explanatory built-in types:

it

O 0 S0 S A U WAL 3 A TIPS P b i 5t T8 01 Pl o e s P ML B bt A A

a_—

Chapter5 [Types 129

BOOLEAN : NUMERIC (p,q) DATE
BIT [VARYING] (a) DECIMAL (p,q) TIME
BINARY LARGE OBJECT () INTEGER . TIMESTAMP
CHARACTER [VARYING] (n) SMALLINT INTERVAL

CHARACTER LARGE OBJECT (n) FLOAT (p)

A number of defaults, abbreviations, and alternative spellings—for example, CHAR for
CHARACTER, CLOB for CHARACTER LARGE OBJECT, BLOB for BINARY LARGE
OBJECT—are also supported; we omit the detajls. Points arising:

L.

|

BIT and BIT VARYING were added in SQL:1992 and will be dropped agaia in
SQL:2003 (}). ' L

Their names notwithstanding, (a) CLOB and BLOB are really string types (they have
nothing to do with objects in the sense of Chapter 25): (b) BLOB in particular is
really a byte or “octet” string type (it has nothing to do with binary numbers). Also,
since values of such types can be very large—ithey are sometimes referred to, infor-
mally, as long strings—SQL provides a coastruct called a locator that (among other
things) allows them to be acce3séd piecemeal.

Assignment and eguality comparison operators are available for all of these types.
Equality comparison is essentially straightforward (but see point 5). The assignment

statement looks like this: - S
SET <target> = <source> ;

Of course, assignments are also performed implicitly when database retrievals and
updates are executed. However, relational assignment as such is not supported. Multi-
ple assignment also is not supported, except as follows:!! If row ris updated by means
of a statement of the form

UPDATE T SET C! = expl, ..., Cn = expn WHERE p ;

(r here being a row in the result of T WHERE p), all of the expressions exp/, ..., expn
are evaluated before any of the individual assignments to C1. Cn are executed.

Strong typing is supported. but only to a limited extent. To be specific, a cenain tax-
onomy can be imposed on the built-in types that divides them into 10 disjoint catego-
ries, thus:

n boolean ' m date

= bit string " time

= binary % timestamp

® character string - W year/month interval
@ pumeric - ® day/time interval

Type checking is performed on the basis of these 10 categories (on assignment and
equality comparison operations-in particular), Thus, for example, an attempt to com-
pare a number and a character string is illegal; however, an attempt to compare two

. 1 Two further exceptions are explained briefly in Chapter 9, Section 9.12, subsection “Base Table Con-
straints,” and Chapter 10, Section 10.6. subsection "View Updates.” These exceptions apart, we know of

no product on the market today that supports multiple assignment. We do believe such support is desir-

able. however, and ultimately required; indeed, it is planned for inclusion in SQL:2003. though not for
refations.

3130 PartII | The Relational Model

numbers is legal, even if those numbers are of different nnmeric types, say INTEGER
and FLOAT (in this example, the INTEGER value will be coerced to type FLOAT
before the comparison is done).

5. For character string types in particular—CHAR(n), CHAR VARYING(n), and
CLOB(n)—the type checking rules are quite complex, Full details are beyond the
scope of this book, but we do need to elaborate briefly on the case of ﬁxed—lcngth
character strings (i.c., type CHAR(n)) in particular:

s Comparison: If values of type CHAR(nl) and CHAR(n2) are compared, the
shorter is conceptually padded at the right with blanks to make it the same length as
the longer before the comparison is done.!2 Thus, for example, the strings 'P2' (of
length two) and ‘P2’ (of length 3) are tonsidered to “compare equal.”

® Assignment: If a value of type CHAR(nI) is assigned to a variable of type
CHAR(n2), then, before the assignment is done, the CHAR(n/) value is padded at
the right with blanks if n] < n2, or truncated at the right if n/ > n2, to make it of
leirgth n2. It is an error if any nonblank characters are lost in any such truncation.

For further explanation and discussion, see reference {4.20].

DISTINCT Types

SQL supports two kinds of user-defined types, DISTINCT types and srrucmrzd types, both
-' of which are defined by means of the CREATE TYPE statement.!’ We consider
DISTINCT types in this subsection and structured types in the next (we set “DISTINCT”
in uppercase to stress the point that the word is not being used in. this.context in its usual
natural language sense). The following is an SQL definition for the DISTINCT type
WEIGHT (compare and contrast the various Tutorial D definitions for this type in Sec-
tion 5.4): -

CREATE TYPE WEIGHT AS DECIMAL (5,1) FINAL ;

In its simplest form (i.e., ignoring a variety of optional speciﬁcations). the syntax is:
CREATE TYPE <type name> AS <representation> FINAL ; - -
Points arising:
1. The required FINAL specification is explained in Chapter 20.

2. The <representation> is the name of another type (and the type in question must not
be cither user-defined or generated). Note in' particular that, given these rules regard-
ing the <representation>>, we cannot define our POINT type from Section 5.3 as an
SQL DISTINCT type.

3. Note further that the <representation> specifies, not a possible representation as dis- -
~cussed earlier in this chapter, but rather the actual physical representation of the

'2 We are assuming here that PAD SPACE applies fo such comparisons {4.20].

13 1t also supports something it calls a domain, but SQL's domeins bave nothing 10 do with domains in
the relational sense, Reference [4.20] discusses SQL's domains in detail.

“

j Chapter5 [Types 131

DISTINCT type in question. In fact, SQL does not support the “possrep” notion at
all. One consequence of this omission is that it is not possible to define a DISTINCT
type—or a structured type, come to that—with two or more distinct possreps.

4. There is nothing analogous to the Tutorial D CONSTRAINT specification. In the
case of type WEIGHT, for example, there is no way to specify that for each WEIGHT
value, the corresponding DECIMAL(S,1) value must be greater than zero (!) or less
than 5,000.

5. The comparison operators that apply to the DISTINCT type being defined are pre-
cisely those that apply to the underlying physical representation. Note: Apart from
assignment (see point 3), other operators that apply to the physical representation do

: not apply to the DISTINCT type. For example, none of the following expressions is
. valid, even if WT is of type WEIGHT: . : '
WT + 14,7 WD + 2 WT + WT o

6. “Selector” and “THE_" opéritors are supported. For example, if NW is a host vari- tl
able of type DECIMAL(5.1), thén the expression WEIGHT(:NW) returns the corre- :
sponding weight value; and if WT is a column of type WEIGHT, then the expression ;

N DECIMAL(WT) returns the.corresponding DECIMAL(S,1) value.!¥ Hence, the fol- |

: ' lowing are valid SQL statements: =~ ' ‘ i
DELETE -~ S ‘

FROM P N
WHERE WEIGHT = WEIGHT (4.7 } ;

EXEC SQL DELETE .-
FROM P ’
WHERE WEIGHT = WEIGHT (:NW) ;

oLcmns: xf A F kS Ll S

EXEC SQL DECLARE Z CURSOR FOR
SELECT DECIMAL (WEIGHT) AS DWT
FROM P -
WHERE . WEIGHT > WEIGHT { tNW) s

7. With one important exception (sce point 8), strong typing does apply to DISTINCT E
types. Note in particular that comparisons between values of 2 DISTINCT type and
values of the underlying representation type are not Jegal. Hence, the following are
not valid SQL statements, even if (as before) NW is of type DECIMAL(S,1):

DELETE
FROM P _ . -
WHERE WEIGHT =~ 14.7 ; /¥ warning ~- invalid (!! */

EXEC SQL DELETE
FROM P
WHERE WEJIGBT = :NW ; /* warning -- invalid 11! */

EXEC SQI. DECLARE Z CURSOR FOR
SELECT DECIMAL, (WEXIGHT) AS DWT
FROM P
- WHERE WEIGHT > :NW ; /* warning —- invalid il =/

oo

The exception mentioned under point 7 has to do with assignment operations. For
example, if we want to retrieve some WEIGHT value into some DECIMAL(S. 1)

14 Actually DECIMAL(WT) is not syntactically valld in SQL:1999 but is expected to become so in SQL:
2003, Note, however, that (unlike Tutorial D's THE_ operators) it cannot be used as a pseudovariable.

132

L . a . E——— -

Part Il | The Relational Model

10.

variable, some type conversion has te occur. Now, we can certainly perform that con-
version explicitly, as here:

SELECT DECIMAL (WEIGHT) AS DWT

INTO tNW

FROM P

WHERE P# = P# ('Pl') ;

However, the following is also legal (and an appropriate coercion will occur):

SELECT WEIGHT

INTO :NW

FROM P

WEERE Pf = Pi (‘P1'y ;

Analogous remarks apply to INSERT and UPDATE operations.

Explicit CAST operators can also be defined for convcrung to, from, or between
DISTINCT types. We omit the details here.

Additional operators can be defined (and subsequently dropped) as required. Note:
The SQL term for operators is routines, and there are three kinds: functions. proce-
dures, and methods. (Functions and procedures correspond very roughly to our read-
only and update operators, respectwcly, methods behave like functions, but are
invoked using a different syntactic style 5y So we could define a function—a poly-

~morphic function, in fact—catled ADDWT (“add weight") that would allow two val-

L.

ues to be added regardless of whether they were WEIGHT values or DECIMAL(S,1)

values or a mixture of the two. All of the following expressions would then be legal:

ADDWT (WT, 14.7)

ADDWT (14.7, WT)

ADDWT { WT, WT)

ADDWT (14.7, 3.0) _

More information regarding SQL routines can be found in references (4.20] and
[4.28]. Further details are beyond the scope of this book.

The following statement is used to drop a user-defined type:)
DROP TYPE <type name> <behavior> ; -

Here <behavior> is either RESTRICT or CASCADE: loosely, RESTRICT means
the DROP will fail if the type is currently in use anywhere, while CASCADE means

the DROP will always succeed and will cause an implicit DROP . . . CASCADE for
everything currently using the type (!).

Structured Types

Now we turn to structured types. Here are a couple of examples:

CREATE TYPE POINT AS { X FLOAT, ¥ FLOAT) NOT FINAL ;
CREATE TYPE LINESEG AS (BEGIN POINT, END POINT) NOT FINAL ;

15 They also. unlike functions and procedures, involve some run-rime binding (sce Chapter 20). Note:
The tecm meriiod, and the slightly strange meaning chat must be ascribed to it in contexts like the one at
hand. derive from the world of object orientation (see Chapter 25).

i O DN oL AT RN Do 51 sl 00 i AR TR e beom s S DR A

Chapter 5 | Types 133

(Actually the second example fails because BEGIN and END are reserved words in SQL.
but we choose to overlook this point.) In its simplest form, then—that is, ignoring a variety
of optional specifications—the syntax for creating a structured type is:

i
i
I
|
f
|
r
v
b
!

CREATE TYPE <type name> AS <representation> NOT FINAL ;

Points arising: .

is expected to allow the alternative FENAL to be specified instead.

2. The <representation> is an <attribute definition commalisr> enclosed in parentheses,
where an <atrribute> consists of an <artribute name> followed by a <type name>,
Note carefully, however, that those “attributes™ are not attributes in the relational
sense, in part because structured types are not relation types (see Chapter 6). More-

ble representation, of the strictured type in question. Nore: The type designer can ef-
fectively conceal that fact, howcvc:—-thc fact, that is, that the representation is
physical-—by a judicious choi¢earid design of operators. For example, given the fore-
going definition of type POINT. the system will automatically provide operators to
expose the Cartesian representation (see points 3 and 6), but the type designer could
provide operators “manually” to éxpose a polar representation as well.

3. Each auribute definition causes automatic definition of two associated operators {ac-
~ tually “methods™), one observer and one mutaror that provide functionality analo-
- gous to that of Tutorial D's THE_ opcrators § For example, if LS, P. and Z are of
types LINESEG, POINT, and FLOAT, respectively, the following assignments are

valid:

SET 2 = P.X : /* "observes® X attribute of P */

SET P.X = Z ; - /* *mutates” X attribute of P */

SET X = LS.BEGIN.X ; /* "observes" X attribute of =/
. /* BEGIN attribute of LS =/

SET LS.BEGIN.X = 2 ; /* "mutates* X attribute of. .+/

/* BEGIN attribute of LS >/

4. There is nothing analogous to the Tutorial D CONSTRAINT 5pe5i;ﬁ€5'tion.

3. The comparison operators that apply to the structured type being defined are specified
by means of a separate CREATE ORDERING statement. Here are two examples:
CREATE ORDERING FOR POINT EQUALS ONLY BY STATE ;

CREATE ORDERING FOR LINESEG EQUALS ONLY BY STATE ;

- EQUALS ONLY means that “=" and “#" (or *“<>", rather, this latter being the SQL
syntax for “not equals™) are the only valid comparison operators for values of the type
in question. BY STATE means that two values of the type in question are equal if and
only if, for all i, their ith attributes are‘equal. Other possible CREATE ORDERING
spcciﬁcations are bcydnd the scope of this book; suffice it to say that, fo: example, the

S Mt

' In the interest of accuracy, we should say that SQL's mutators are not reaily mutators in the conven-
tional sense of the term (i.¢.. they are not update operatars), but they can be used in such a way as to
achieve conventional mutator functionality, For example, “SET P.X = Z" (which in fact does not explicitly
contain o mutator invocation!) is defined to be shorthand for “SET P = P.X(Z)" (which does).

1. The required NOT FINAL specxﬁcatlon is cxplamed in Chapter 20, Note: SQL:2003

over, that <representation> is the actual physical representation, not just some possi-

i s et et
N .

Py ase e
e e AT T e E T

b e

o r e

134 PartIl | The Relational Model : .

‘ semantics of *>" can also be defined for a structured type if desired. Note, however,

jio that if a given structured type has no associated “ordering,” then no comparisons at all,

not even equality comparisons, can be performed on values of that type-—a state of
affairs with far-reaching consequences, as you might imagine.

6. No selectors are provided automatically, but their effect can be achxevcd as follows.
First, SQL does automatically provide what it calls constructor functions, but such
functions return the same value on every invocation—namely, that value of the type
in question whose attributes all have the applicable defauit value. 17 For example, the
constructor function invocation

POINT () -

returns the point with default X and Y values. Now, however, we can immediately in-

voke the X and Y mutators (see point 3) to obtain whatever point we want from the

result of that constructor function invocation. Moreover, we can bundle the initial
“construction” and the subsequent “mutations™ into a single expression, as illustrated

by the following example: : '

POINT () . X (5.0) . ¥ { 2.5) -

Here is a more complex example:

LINESEG () . BEGIN (POINT () . X (5.0) . ¥ { 2.5))
.END (POINT () . X (7.3) .Y { 0.8 })

Note: Constructor function invocations can optionally be preceded by the noiseword
NEW without changing the semantics. For example:

NEW LINESEG () . BEGIN (NEW POINT {) . X (5.07) . Y { 2.5) }
. END (NEW POINT () . X (7.3 } . Y'(0.8))

7. Strong typing does apply to structured ty'pes. except pbssibly as described in Chapter
6, Section 6.6 (subsection “Structured Types™).

' 8. Operators in addition to those already mentioned can be defined (and sut;scquently
' dropped) as required.

9. Structured types and orderings can be dropped. Such types can be “altered,” too, via
an ALTER TYPE statement—for example, new attributes can be added or existing
ones dropped (in other words, the representation can be changed).

We will have more to say regarding SQL's structured types in the next chapter (Sec-
tion 6.6) and in Chapters 20 and 26.

—————— - .

17 The default value for a given aaribute can be specified as part of the corresponding attribute definition.
If no such value is specified explicitly, the default value—the “default default™—will be null. Nore: For
reasons beyond the scope of this book, the default must be null if the type of the attribute is either a row
type or a user-defined type (like POINT), and it must be either null or empty—spec:ﬁed as ARRAY[]—if
it is an array type. Thus, for example, the constructor function invocation LINESEG() will necessarily
return the line segment whose BEGIN and END components are both null.

RiAes s WA, 5] RTINS B A NI 00 n ke, VB L DRt i e R L SR U LA

PPL | O S VP VU

"
-
W
&
.

Chapter 5 | Types 135

Type Generators

SQL suprorts three type generators (the SQL term is type constructors): REF, ROW, and
In this chapter we discuss ROW and ARRAY only, deferring REF to Chapter
26. Here is an example illustrating the use of ROW:
CREATE TABLE CUST
(CUST# CHAR(3),
ADDR ROW { STREET CHAR(50),
CITY CHAR(2S),
STATE CHAR{2),

ZIP CHAR(S5))
PRIMARY KEY (CUSTH)) ;

STREET, CITY, STATE, and ZIP here are the fields of the generated row type. In
general, such fields can be of any type, including other row types. Field-level references
make use of dot qualification, as in the following example (the syntax is <exp>. <ﬁe[d
name>, where the <exp> mus;.b; row-va]ued)

SELECT CX.CUST# o

FROM . CUST AS CX _ -

WHERE CX.ADDR.STATE = 'CA’.

~

Note: CX here is a correz'anon name. Correlation names are dlscussed in detail in Chapter
8 (Section 8.6); here we simply note that SQL requires explicit. correlation names to be
used in field references, in order to avoid a certain syntactic ambiguity that might otherwise
OCCUr. B

Here now is an INSERI‘ example:

INSERT INTO CUST (CUST#, ADDR)

VALUES ('666', ROW (*1600 Pennsylvania Ave.',

'Washinqtan‘ -'De', '20500*)) ;

Note the row literal in this example (actually, that should be “row liteml in quotes—for-
mally, there is no such thing as a row literal in SQL, and the expressxon in the example is a
row value constructor). '

One more example:

"l"""l'

UPDATE CUST AS CX .
SET CX.ADDR.STATE = 'TX*
WHERE CUSTE = *993%°*' ;

Note: In fact the standard does not currently psrm_it field-level updating as in this example,
but the omission looks like an oversight. _
The ARRAY type generator is somewhat similar. Here is an example:
CREATE TABLE ITEM_SALES
{ ITEME CHAR{S),

SALES INTEGER ARRAY [12],
PRIMARY KEY (ITEM#)}) :

18 5QL:2003 is likely to add MULTISET.

136 Part Il | The Relational Model

Types generated by means of ARRAY are always one-dimensional; the specified ele-
ment type (INTEGER in the example) can be anything except another array type.!? Let a
be a value of some array type. Then a can contain any number n of elements (n 2 0), up to
but not greater than the specified upper bound (12 in the example). If a contains exactly n
clements (n > 0), then those elements are precisely—and can be referenced as—a(1}, a(2],
... a[n]. The expression CARDINALITY(a) retums the value n.

Here now are some examples that use the ITEM_SALES table. Note the array literal (or

. “array literal,” rather—officially, it is an array value constructor) in the second example.
SELECT ITEM#

FROM = ITEM SALES
WHERE SALES [3] > 10 ;

INSERT INTO ITEM_SALES (ITEM#, SALES)
VALUBS (*X4320°,
ARRAY [0, O, o, 0, 0, 0, 0, 0, 0, 0, O, 0]) ;

UPDATE ITEM SALES

SET SALES (3) = 10

WHERE ITEM$é = '20564' ;

We close this section by noting that assignment and equality comparison operators do
apply, for both ROW and ARRAY types—unless the ROW or ARRAY type in question
invoives an element type for which equality comparision is not defined, in which case it is
not defined for the ROW or ARRAY type in question either.

58 SUMMARY

In this chapter we have taken a comprehensive look at the crucial notion of data types
(also known as domains or simply types). A type is a set of values: namely, the set of all
values that satisfy a certain type constraint (specified in Tutorial D by a POSSREP
clause, including an optional CONSTRAINT specificationt). Every type has an associated
set of operators (both read-only and update operators) for operating on values and vari-
ables of the type in question. Types can be as simple or as complex as we like; thus, we
can have types whose values are numbers, or strings. or dates. or times, or audio record-
ings. or maps, or video recordings, or geometric points (etc.). Types constrain opera-
tions, in that the operands to any given operation are required to be of the types defined for
that operation (strong typing). Strong typing is a good idea because it allows certain logi-
cal errors to be caught, and caught moreover at compile time instead of run time. Note that
strong typing has important implications for the relational operations in particular (join.
union, etc.), as we will see in Chapter 7.

19 This restriction is likely to be removed in SQL:2003. In any case, the element type can be a row type,
and that row type can include a field of some array type. Thus (e.g.} the following is a legal variable defini-
tion:

VX ROW (FX INTEGER ARRAY {12]) ARRAY ([12]

And then (e.g.) VX([3].FX[5] refers to the ﬁfsh element of the array that is the sole field value within the
row thar is the third element of the array that is the vajue of the variable VX,

PRI PO 1V T 2P PRPCRF S POY NP T S,

RN kR e o 1ot s AL TR o e

TR RE e LT PR PE RTINS

EXERCISES

Chapter5 | Types 137

We also discussed the important logical difference between values and variables, and
pointed out that the essential property of a value is that it cannot be updated. Values and
variables are always typed; so also are (relational) attributes, (read-only) operators,

. parameters, and more generally expressions of arbitrary complexity.

Types can be system- or user-defined,; they can also be scalar or nonscatar. A scalar
type has no user-visible components, (The most important nonscalar types in the rela-
tional model are relation types, which are discussed in the next chapter.) We distinguish
carefully between a type and its physical representation (types are a model issue, physi-
cal representations are an implementation issue). However, we do require that every type
have at least one declared possible representation (possibly more’ than one). Each such
possible representation causes automatic definition of one selector operator and, for each
component of that possible representation, one THE_ operator (including a THE
pseudovariable). We support explicit type conversions but no implicit type coercions
We also support the definition of any number of additional operators for scalar types, and
we require that equahty compamson and (multiple) assignment be defined for every
type

We also discussed type generators. which are opcratots that return types (ARRAY is'
an example). The constraints and operators that apply to generated types are derived from
the generic constraints and operators that are associated with the applicable type generator.

Finally, we sketched SQL’s type facilities. SQL provides a variety of built-in
types—BOOLEAN, INTEGER. DATE, TIME, and so on (each with its associated sct of
operators, of course)}—but supports only a limited form of strong typing in connection
with those types. It also allows users to define theic own types, which it divides into
DISTINCT types and structured types, and it supports cerain type generators
(ARRAY and ROW, also REF). We offered an analysis of all of this SQL functionality in
terms of the ideas presented earlier in the chapter.

-

¥

5.1 State the type rules for the assignment (“;=") and equahty compatison (="} operators
5.2 Distinguish:

value v3. variable

type vs. representation
physical representation vs. possible representation
scalar vs. nonscalar

read-only operator vs. 'update operator

5.3 Explain the following in your own words

coercion pscudovariabieé
generated type ' selector

literal strong typing
ordinal type THE_ operator
polymorphic operator type generator

138

Part Il | The Relational Model-

5.4 Why are pseudovariables logically unnecessary?
5.5 Define an operator that, given a rational number, remms the cube of that number

5.6 Define a read-only operator that, given a point with Cartesian coordinates x and 'y, returns the
point with Cartesian coordinates f{x) and g(y), where f and g are predefined operators.

5.7 Repeat Exercise 5.6 but make the operator an update operator.

5.8 Give a type definition for a scalar type called CTRCLE. What selectors and THE_ opcrators
apply to this type? Also: :

a. Deﬁne a set of read-only operators to compute the diameter, circumference, and area of 2 given
cu‘cle

b. Deﬁnc an update operator to double the radius of a given circle (more precisely, to update a
given CIRCLE variable in such a way that its circle vnlue is unchanged except that the radivs is
thce what it was before).

59 Give some examples of types for which it might be useful to define two or more distinct possi-
ble representations. Can you think of an example where distinct possible rcprescntauons for the
same type have different numbers of components?

5.10 Given the catalog for the departments~and-¢mployees database shown in outline in Fig 3.6in
Chapter 3. how could that catalog be extended to take account of usgr-defined types and operators?

5.11 What types are the catalog relvars themselves defined on?

5.12 Give an appropriate set of scalar type definitions for the suppliers-parts-projects dntabasc (see
Fig. 4.5 on the inside back cover). Do not attempt to write the relvar definitions.

5.13 We pointed out in Section 5.3 that it is suictly incorrect to say that (e.g.) the quantity for a
cerrain shipment is 100 (“a quantity s a value of type QTY. not 2 value of type INTEGER™. As 2
consequence, Fig. 4.5 is rather sloppy, inasmuch as it pretends that it is correct to think of, for exam-
ple. quantities as integers. Given your answer to Exercise 5.12, show the comrect way of referring to
the various scalar values in Fig. 4.5. : ’

5.14 Given your answer to Exercise 5.12, which of the following scalar expressions arm};gal? For
the legal ones, state the type of the result; for the others, show a legal expression that will achieve
what appears to be the desired effect.

a. J.CITY = P,CITY

. JNAME || PNAME

QTY * 100

QTY + 100

STATUS + §

J.CITY < S.CITY

g. COLOR = P.CITY

h. J.c1ry = p.ciTy || ‘burg’

5.15 Tt is sometimes suggested that types are really variables too, like relvars. For example, legal
employee numbers might grow from three digits to four as a business expands so we might need to
update “the set of all possible employee numbers.” Discuss.

L

™

i o Chapter 5 | Types 139

5.16 Give SQL analogs of all type deﬁmuons from Scctmns 5. 3 and 5.4,
5.17 Give an SQL answer to Exercise 5.12.
5.18 InSQL:
a.. What is a DISTINCT type? What are values of a DISTINCT type called generically? Is there
such a thing as an indistinct type?
b. What is a structured type? What are values of a stmcmred type called generically? Is there such
a thing as an unstructured type?
5.19 Explain the terms observer. mutator, and eonstructor function as used in SQL

5. ’0 What are the consequences of the “=" operator not being defined for some given type?

521 Atypeis a set of values, so we might define the empry type to be the (necessarily unique) type
* where the set in question is empty. Can you think of any uses for such a type?
5.22 “SQL has no formal row ot arvdy literals.” Explain and justify this observanon

523 Consider the SQL type POINT ag.defined in the subsection “Structured Types™ in Section 5.7.
That type has a representation involving Cartesian coordinates X and Y. What happens if we replace
. that fype by a revised type POINT with a representation involving polar coordinates R and 8 instead?
. 5.24 What is the difference between the SQL COUNT and CARDINALITY operators? Nove:
COUNT is discussed in Chapter 8, Secton 8 6 .

I

REFERENCES AND BIBLIOGRAPHY

5.1 J. Craig Cleaveland: An Introduction 1o Data Types. Reading, Mass.: Addison-Wesley (1986).

RS A Tt e

i

R L T

- - e —— -

ﬁa.u-u,wmﬁ-ﬁwa. “%&ﬂdaa. SRR T ¥ AETY TS PR T VI e A Y TR
et . I WWTSRT UE TTR TR LR TR TR
SRV TASINE YT SRR T) b
VYT TR T ...’i%amﬂrguﬂﬂ%wﬂag
h s O RABIRLED

CHAPTER

SN N DR 2 i YR B -

Relations

6.1 Introduction

6.2 Tuples

6.3 Relation Types

6.4 Relation Values

6.5 Relation Variable§-3+
6.6 SQLFacilies
6.7 Summary

TITITIIIIA ST WY 8 WA RRMNIATSTS, PRI B P A T I 07 PR T X 1
) I - - k] . - 4 m . i . . ‘__:u‘
. FEE
[N
]
1,

I\

»
5

Y

Exercises ’ "

-

References and Bibliography

WS TV T R TR M SN G W L K T T

6.1 INTRODUCTION

Ly

In the previous chapter, we discussed types, values, and variables in general; now we turn
our attention to relation types, values, and variables in particular. And since relations are
built out of wuples (speaking a trifle loosely), we need to examine tuple types. values, and
variables as well. Note immediately, however, that tuples are uot all that impartant in
themselves, at least from a relational perspective; their significance lies primarily in the
fact that they form a necessary stepping-stone on the way lo relations.

G A LTal bt H e b BT

L Ll
.,

TP A T

6.2 TUPLES

We begin by defining the term: tuple precisely. Given a collection of types TT (i = 1, 2, ...,
n), not necessarily all distinct, a tuple value (tuple for short) on those types—r, say—is a
set of ordered triples of the form <Ai,Ti,vi 3, where Ai is an attribute name, Ti is a type
name, and vi is & value of type 71, and: .

® The value n is the degree or arity of ¢, _
® The ordered triple <A{,Ti,vi> is a component of 1.

141

B0, R T S

- : T T e e AV Ll
N R R A R A I T St e s s
r -,ﬂi'jg.ﬁ-' air o B AT AT =

142 Part I | The Relational Model

® The ordered pair <Ai,7t> is an attribute of ¢, and it is uniquely identified by the
attribute name Ai (attribute names Ai and Af are the same only if i = j). The value vi is
the attribute value for attribute A7 of 1.! The type 77 is the corresponding attribute

type.
® The complete set of attributes is the heading of . .
® The tuple type of ¢ is determined by the heading of ¢, and the heading and that tuple

type both have the same attributes (and hence the same attribate names and types)
and the same degree as ! does. The tuple type name is precisely:

TOPLE { Al T, A2 T2, ..., An Tn }
Here is a sample wple: .

MAJOR_P§ : Pt | MINOR P# : P# | QTY : QTY
P2 ” P4]

The attribute names here are MAJOR_P#, MINOR_P#, and QTY; the corresponding type
names are P#, P# again, and QTY; and the corresponding values are P#('P2"), P#('P4"), and
QTY(7) (for simplicity, these values have been abbreviated to just P2, P4, and 7, respec-
tively, in the picture). The degree of this tuple is three. Its heading is:

| HAJOR P# : P# | MINOR_PF : Pf | QTY : QTY |

And its type is:
TUPLE { MAJOR_P# P#, MINOR_PF P#, QTY QTY }

Note: It is common in informal con.texts to omit the type names from 2 tuple heading,
showing just the attribute names, Informally, therefore, we might represent the foregomw
tuple thus:

MAJOR_PF | MINOR_P# | QTY |
P2 P4 7

In Tutorial D, the following expression could be used to denote the tuple we have been
discussing: .

TUPLE { MAJOR_P# P#{'P2'), MINOR_P# P¥('P4'), QTY QTY(7) }

(an example of a tuple selector invocation—see the next subsection but one). Observe in
particular in this expression that the types of the tuple attributes are determined unambigu-
ously by the specified attribute values (e.g., attribute MINOR_P# is of type P# because the
corresponding attribute value is of type Pi#).

! There is. of course, a logical difference between an attribute name and an attribute per se. This fact not-
withstanding, we often use expressions such as “anribute A" informally, to mean the attribute whose
name is Ai (indeed, we did exactly this several times in the previous chapter).

Chapter 6 [Relations 143

Properties of Tuples

Tuples satisfy 2 variety of important properties, all of ‘them immediate consequences of
the definitions given in this section so far. To be specific:

= Every tuple contains exactly.one value (of the appropriate type) for each of its
attributes. ,

® _There is no left-to-right ordering to the components of a tuple. This property follows
because a tuple is defined to involve a ser of components, and sets in mathematics
have no ordering to their elements. -

» Every subset of a tuple is a tuple (and every subset of a heading is a heading). What
is more, these remarks are true of.the empty subset in particular!-—see the next
paragraph.

More terr}tinolagy: A tuple of degree one is said to be unary, 2 tuple of degree t\w)o
binary, a tuple of degree three re:‘rji;fi?@*(and so on); more generally, a tuple of degree n is’
said to be n-arn? A tuple of degree’zero (i.e., a tuple with no components) is said to be
nullary. We elaborate briefiy on-this last possibility. Here is a nullary tuple in Tutorial D
aotation: e~

TUPLE (} | '

Sometimes we refer to a tuple of degree zero more explicitly as a “O-tuple,” in order to
emphasize the fact that it has no components. Now, it might seem that a O-tuple is not
likely to be very useful in practice; in fact, however, it turns out that the concept is cru-

cially important, We will have more 10 say about it in Section 6.4.

The TUPLE Type Generator

Tutorial D provides a TUPLE type generator that can be invoked in the definition of (e.g.)
same relvar attribute or some tuple variablt:._J Here is an example of the latter case:
VAR ADDR TUPLE { STREET CHAR, . v
CITY CHAR,

STATE CHAR, ‘ -
ZIP CHAR } : * . '

A TUPLE type generator invocation takes fhe_ general form

TUPLE { <attribute commalist> }

(where each <artribute> consists of an <attribute name> followed by a <type name>). The
tuple type produced by 2 specific invocation of the TUPLE type generator—for example,
the one just shown in the definition of variable ADDR—is, of course, a generated type.

Every tuple type has an associated tuple selector operator. Here is an example of a
selector invocation for the tuple type shown in the definition of variable ADDR:

2 The term n-tuple is sometimes used in place of ruple (and so we speak of, e.g., 4-tuples, 2-tuples, and so
on). However, it is usual to drop the “n-" prefix.

3 Tuple variables are not part of the relational model, and they are not permitted within a relational data-
base. But a system that supports the relational model fully will probably support tuple variables within
individual applications (i.e.. tuple variables that are “application-local™).

144

Part II | The Relational Model

TUPLE { ‘STREET '1600 pennsylvania ave.*,

CITY ‘Washington', STATE 'DC', ZIP '20500')

The tuple denoted by this expression could be assigned to the tuple variable ADDR,

or tested for equality with another tuple of the same type. Note in particular that, in order

for two tuples to be of the same type. it is necessary and sufficient that they have the same

attributes. Note too that the attributes of a given tuple type can be of any type whatsoever
(they can even be of some relation type or some other tuple type).

4. Operators on Tuples

We have already mentioned the tuple selector, assignment. and equality comparison oper-
ators briefly. However. it is worth spelling out the semantics of tuple equality in detail,
since so much in later chapters depends on it. To be specific. all of the following are
defined in terms of it:

Essentially all of the operators of the relational algebra (see Chapter 7)

u
» Candidate keys (see Chapter 9

m Foreign keys (again; see Chapter 9)

» Functional and other dependencies (see Chapters 11-13)

and more bqéidés. Here then is a precise definition: _
u Thple equniityé Tuples ¢/ and 12 are equal (ie., 1/ =12 is true) if and only if they
have the samé attributes A, A2, ... An and, forall i (i = 1, 2. ..., n), the value v/ of A{
" intl is equal to the value v2 of A inf2,
» Furthermore—this might seem obvious but it needs to be said—tuples ¢/ and ¢2 are
‘duplicates of each other if and only if they are equal (meaning they are in fact the
very same tuple). A : ,
Note that it is an immediate consequence of the foregoing definition that all 0O-tuples
are duplicates of one another! For this reason, we are justified in talking in terms of the 0-
wple instead of *a” 0-tuple, and indeed we usually do.
Note too that the comparison Operators “<™ and “>" do not apply to tuples (i.e.. tuple
types are not “ordinal types”). - ‘

In addition to the foregoing, reference [3.3] proposes analogs of certain of the well-
known relational operators (to be discussed in Chapter 7)—tuple project. tuple join, and so
on. These operators are mostly self-explanatory; we content ourselves here with just one
example, a tuple project {that operator being probably the most useful in practice). Let vari-
able ADDR be as defined in the previous subsection, and let its current value be as follows:

TUPLE STREET *1600 Pennsylvania aAve.',
¢ cITY 'Washington', STATE °DC', ZIP *20500' }

Then the tuple projection
ADDR { CITY, SIP }
denotes the tuple

enlr el ..”.....4.;'-=dﬂ:m.amlu‘&inl‘.£lglﬂwairg4

O PR

. . ’
B sttt 18 0 AL 10 150 S s 3 s b b sl i Wkt -l e s 5

]

1

2y

b

<

e
:;1f

Chapter 6 [Relations 145

TUPLE { CITY ‘Washington', ZIP '20500' }

We also need to be able to extract a given attribute value from a given tuple. By way
of example, if ADDR is as before, then the expression

2IP FROM ADDR

denotes the value
*20500°"

Tuple type inference: One important advantage of the tuple type naming scheme, as
defined near the start of this section, is that it facilitates the task of determining the type of
the result of an arbitrary tuple expresslon For example, consider this tuple projection
again:

ADDR { CITY, ZIP }

As we have seen, this expression evaluates to a tuple that is derived from the current value
of ADDR by “projecting away" attributes STREET and STATE. And the tuple type of that
derived tuple is precisely:

TUPLE { CITY CHAR, ZIP CHAR.} _
Analogous remarks apply to all possible tuple éxpressions.
WRAP and UNWRAP: Consider the following wple types:

TUPLE { NAME NAME, ADDR TUPLE { STREET CHAR, CITY CﬁAR,
STATE CHAR, ZIP CHAR } }

TUPLE { NAME NAME, STREET CHAR, CITY CHAR,
STATE CHAR, ZIP CHAR }

Let us refer to these tple types as TT1 and TT2, respectively. Observe in particular
that type 7T/ includes an attribute that is itself of some tuple type (the degree of 777 is
two, not five). Now let NADDR1 and NADDR2 be tuple variables of types TT! and T72,
respectively. Then: B,

® The expression - -
NADDR2 WRAP (STREET, CITY, STATE, ZIP } AS ADDR
takes the current value of NADDR2 and wraps the STREET, CITY, STATE. and ZIP.

components of that value to yield a singie tuple-valued ADDR component. The result
of the expression is thus of type 7T/, and so (e.g.) the following assignment is valid:

NADDR1 := NADDR2 WRAP { STREET, CITY, STATE, 2IP } AS ADDR ;

® The expression
NADDR1 UNWRAP ADDR
takes the current value of NADDRI and unwraps the (tuple-valued) ADDR compo-
nent of that value to yield four separate components STREET. CITY, STATE, and ZIP.
The result of the expression is thus of type 772, and so (e.g.) the following assignment
is valid:
NADDR2 := NADDR1 UNWRAP ADDR ;

e

ek S e L

A

yi

146 Part IT | The Relational Model

Tuple Types vs. Possible Representations

1

You might have noticed a certain similarity between our TUPLE type generator syntax as
described in this section and our declared possible represenration syntax as described in
Chapter 5—both involve 2 commalist of items, where each item specifies the name of
something and a corresponding type name—and you might be wondering whether there
are two concepts here or only one. In fact there are two (and the syntactic similarity is
unimportant). For example, if X is a tuple type, then we might very well want to take a-pro-
jection of some value of that type, as described in the previous subsection. However, if X is
a possible representation for some scalar type 7, then there is no question of wanting to
take a projection of a value of that scalar type 7. For further discussion, see reference [3.3].

6.3 RELATION TYPES

however, we have rather more to say regarding relations than we had for wples, and we
have therefore split the material over several sections—Section 6.3 discusses relation
types. Section 6.4 relation values, and Section 6.5 relation variables (relvars).

Here first is a precise definition of the term relation. A relation value (relanon for
short), 7 say, consists of a heading and a body," where:

» The heading of ris a tuple heading as defined in Section 6.2. Relation r has the same

heading does.

% The body of r is a set of tuples, all havmg that same heading; the cardinality of that
set is said to be the cardinality of r. (In general, the cardinality of a set is the number
of elements in the set.) -

:L The relation type of ris determined by the heading of 7 and it has the same attributes (and
; hence attribute names and types) and degree as that heading does. The reiation type name
is precisely:

; RELATION { Al T1, A2 T2, ..., An Ta }
Here is a sample relation (it is similar but not identical to the relation shown in Fig.

4.6 in Chapter 4):
MAJOR_PF : PF | MINOR P# : P# | QTY : QTY
Pl P2 5
Pl P3 3
P2 P3 2
p2 Pé 7
P3 ' PS5 4
P4 Pé -8

4 In terms of the usual tabular picture of a reiation, the heading corresponds to the row of column names
and the body to the set of data rows. The heading is also referred to in the literature as a (relation)
schema, or sometimes scheme. It is also referred to as the intension (note the spelling}, in which case the
body is referred to as the extension.

%—

Now we turn to relations. Our treatment parallels that for tuples in.the prévious section; .

attributes (and hence the same attribute names and types) and the same degree as that -

s emcattttsbu b S0 ey i, . .

a0 o -

Chapter 6 | Relations 147

“The type of this relation is:
RELATION { MAJOR_P# P#, MINOR P P§, OTY OTY } -

It is common in informal contexts to omit the type names from a relation heading,
showing just the attribute names. Informally, therefore, we might represent the foregoing
relation thus:

MAJOR_P# | MINOR P# | QTY
Pl P2 s
P1 P3 3
P2 P3 "2
P2 Pe 7
P3 PS 4
1 p4 Pé .8

In Tutorial D, the following£xpression could be used to denote this relation:

RELATION { L
TUPLE { MAJOR_P# P#('Pl'}), MINOR_P# P#(’'P2'), QTY QTY(S) } ,
TUPLE { MAJOR_P# PH('PLl'), MINOR_P# P#{'P3°'), QTY QTY(3)) ,
TUPLE { MAJOR”P# P#('P2!), MINOR_P# PH{'P3'), QTY QTY¥(2) } .
TUPLE { MAJOR_FP# P#('P2'),” MINOR_P# PE('P4’), QTY QTY(7) } .
TUPLE { MAJOR_P# P#('P3’), MINOR_P# P#('P5'), QTY QTY{4) } ,
{ }}

TUPLE { MAJOR_P# P#('P4’'), MINOR_PF P#(’ P6*), QY Q'!.‘Y(B)

This expression is an example of a relation selector mvocnnon. The general format is:
RELATION [<heading> | (<tuple exp cama.!ist> } ‘

(where the optional <heading>, which is a commalist of <atmbute>s enclosed in braces,
is required only if the <muple exp commalist> is empty). Of course, ail of the <mple
exp>s must be of the same tuple type, and that tuple type must be cxactly the one deter-
mined by the <heading> if a <heading> is specified. _

Note that, stnctly speaking, a relation does not contain tuples—tt contains a body,
and that body in turn contains tuples. Informally, however, it is convenient to talk as if
relations contained tuples directly, and we will follow this sxmpl' ifying convention
throughout this book., _ -

As with tuples, a relation of degree one is said to be unary, 1 relauon of degree two
binary, a relation of degree three remary (and so on); more generally, a relation of degree
n is said to be n-ary. A relation of degree zero—that is, a relation with no attributes—is said
to be nullary (we will dlscuss this last possibility in detail in the next section). Also,
observe that: _

n Every subset of a headfng is a heading (as with tuples).
u Every subset of a body is abody. .

In both cases, the subset in question might be the empty subset in particular.

The RELATION Type Generator

Tutorial D provides a RELATION type generator that can be mvoked in (e.g.) the defini-
tion of some relvar: Here is an example:

148 Part I | The Relational Model

VAR PART STRUCTURE ...
RELATION { MAJOR_P# P&, MINOR_P# P#, QTY QTY } ... ;
(We have omitted irrelevant portions of this definition for simplicity.) In general, the
RELATION type generator takes the same form as the TUPLE type generator, except for
the appearance of RELATION in place of TUPLE. The relation type produced by 2 spe-
cific invocation of the RELATION type generator—for example, the one just shown in the
definition of relvar PART_STRUCTURE—is, of course, a generated type.

Every relation type has an associated-relation selector operator. We have already seen
an example of 4 selector invocation for the relation type just illustrated. The relation
denoted by that selector invocation could be assigned to the relvar PART_STRUCTURE,
or tested for equality with another relation of the same type. Note in particular that, in
order for two relations to be of the same type, it is necessary and sufficient that they have
the same attributes. Note too that the attributes of a given relation type can be of any type
whatsoever (they can even be of some tupie type or some other relation type).

6.4 RELATION VALUES = . o ,

Now we can begin to take a more detailed look at relations as such (relation values, that
is). The first point to note is that relations satisfy certain properties, all of them immediate
consequences of the definition of relation given in the previous section, and all of them
very important. We first state the properties in question, then discuss them in detail. They
are as follows. Within any given relation:

* Every tuple-contains exactly one value (of the appropriate type) for each attribute.
_There is no left-to-right ordering to the attributes. '
There is no top-to-bottom ordering to the tuples,

There are no duplicate tuples. .

We use the suppliers relation from Fig. 3.8 (see the inside back cover) to illustrate
these properties. For convenience we show that relation again in Fig. 6.1, except that now
we have expanded the heading to include the type names. Note: By rights we should have
expanded the body, too, to include the attribute and type names, For example, the S# entry
for supplier S1 should really look something fike this:

LN -

-

{
g
;
;
g
?

S# S# S#('S1)

St : SF | SNAME : NAME | STATUS : INTEGER | CITY : CHAR
S1 Smith 20 | Leondon
s2 Jones 10 | paris
s3 Blake 30 | Paris
sS4 Clark 20 | London
§5 Adams 30 | Athens

Fig. 6.1 The suppliers relation from Fig. 3.8

- ™

) : Chapter 6 [Relations 149

For simplicity, however, we have left the body as originally shown in Fig. 3.8.
1. Relations Are Normalized

As we know from Section 6.2, every tuple contains exactly one value for each of its i3
attributes; thus, it certainly follows that every tuple in every relation contaias exactly one)
value for each of its attributes. A relation that satisfies th1s property is said to be npormal-
ized, or equivalently to be in first normal form, INF. The relation of Fig. 6.1 is nor-
malized in this sense.

Note: This first property might seem very obvious, and indeed so it is—especially
since, as you must have realized, 2!l relations are normalized according to the defini-
tion! Nevertheless, the property does have some important consequences. See the sub-
section “Relation-Valued Attributes™ later in this secuOn, also Chapter 19 (on missing
information).

2. Attributes Are Unordered, Leﬁ‘ t0 R:ght

We already know that the components of a wple have no left-to-right ordering, and thc
same is true for the attributes of a relation (for essentially the same reason—namely, that
the heading of a relation involves a set of attributes, and sets in mathematics have no
ordering to their elements). Now, when we represent a relation as a table on paper. we are
naturally forced to show the columns of that table in some left-to-right order, but you
should ignore that order if you can. In Fig. 6.1, for example. the columns could just as
well have been shown in (say) the left-to-right order SNAME, CITY, STATUS, S#~—the
figure would sull have represented the same relation, at least as far as the relational model
is concerned.® Thus, there is no such thing as “the first attribute” or “the second attribute”
(etc.), and there is no “next attribute” (i.e., there is no concept of “nextness”); attributes
are always referenced by name, never by position. As a result, the scope for errors and
obscure programming is reduced. For example, there is no way to subvert the system by
somehow “fiopping over” from ene attribute into another. This situation contrasts with
that found in many programming systems, where it often is possible to exploit the physi-
cal adjacency of logically discrete items, deliberately or otherwise, in a, variety of subver-
sive ways. '

3. Tuples Are Unordered, Top to Botiom

This property follows from the fact that the body of the reiation is also a set (of tuples): to
say it again, sets in mathematics are not ordered. When we represent 2 relation as a table
- on paper, we are forced to show the rows of that table in some top-to-bottom order, but
again you should ignore that order if you can. In Fig. 6.1, for example, the rows could just
as well have been shown in réverse order—the figure would still have represented the
same relation. Thus, there is no such thing as “the first tuple” or “the fifth tuple™ or “the
97th tuple" of a relation, and there js no such thing as “the next tuple”; in other words, .

4

3 So called because certain “higher™ normal I'onns—-second. third. and so on—can also be defined (see
Chapters 12 and 13).

& For reasons that need pot concern us here, relations in mathematics, unlike their counterpans in the
relational model, do have a left-to-right order to their acributes (and likewise for tuples. of course).

.

150 Part II | The Relational Model

there is no concapt of positional addressing, and there is no concept of “nextness " Note
that if we did have such concepts, we would need certain additional operators as well—
for example, “retrieve the nth tuple,” “insert this new tuple here,” “move this tuple from
here to there” and so on. It is a very strong feature of the refational model (and a direct
consequence of Codd's Information Principle) that, because there is one and only one
way to represent mformanon in that model, we need one and only one set of operators to
deal with it. ‘ :

To pursue this latter point 2 moment longcr In fact, zt is axiomatic that lf we havc N
different ways to represent information, then we need & different sets of operators. And if
N> |, then we have more operators to impiement, document. teach, learn, remember, and
use. Bur those extra operators add complexity, not power! There is nothing useful that can
be done if & > [that cannot be done if ¥V = I, We will revisit this issue in Chapter 26 (sce
references (26.12-26.14] and (26.177), and it will crop up again in Chapter 27.

Back to relations specifically. Of course, some notion of top-to-bottom tuple order-
ing—and of left-to-right attribute ordering too, come to that—is required in the interface
between the database and a host language such as C or COBOL (see the discussion of
SQL cursors and ORDER BY in Chapter 4). But it is the host language, not the relational
model, that imposes that requirement; in effect, the host language requires unordered rela-
tions to be converted into ordered lists or arrays (of tuples), precisely so that operations
such as “retrieve the nth tuple” can have a meaning, Likewise, some notion of tuple order-
ing is also nceded when results of queries are presented to the end user. However. such
notions are not part of the relational model as such; rather, they are part of the environ-
ment in which the relational implementation resides.

..
. . LT e i) £ daiaania |l Pt ;_' ,.'H ',u- P Y '
oLl TP AP RN R Y EE T TSR i 2 o S ey s

4. There Are No Duplicate Tuples R

This property also follows from the fact that the body of the reiauon is a set; sets in math-
ematics do not contain duplicate elements (equivalently, the elements are all distinct).
Note: This property serves yet again to illustrate the point that a relation and a-table are
not the same thing, because a table might contain duplicate rows (in the absence of any
discipline to prevent such a possibility), whereas a relation, by definition, never contains
any duplicate tuples.

As a matter of fact, it is (or should be) obvious that the concept of “duplicate tuples”
makes no sense, Suppose for simplicity that the relation of Fig, 6.1 had just two attributes,
S# and CITY, with the intended interpretation—see Section 6.5—"Supplier S# is located
in city CITY,” and suppose the relation contained a tuple showing that it is a “true fact”
that supplier S1 is located in London, Then if the relation contained a duplicate of that
tuple (if that were possible), it would simply be informing us of that same “true fact” a
second time. But if something is true, saying it twice does not make it more true!

Extended discussions of the problems that duplicate tuples cause can be found in ref-
erences {6.3] and [6.6].

Y e,

Chapter 6 | Relations 151

Relations vs. Tables

For purposes of reference, we present in this subsection a list of some of the main differ-

~ ences between (a) the formal object that is a relation as such and (b) the informal object

that is a table, which is an informal picture on paper of that formal object:

1. Each attribute in the heading of a relation involves a type name, but those type names
are usually omitted from tabular pictures, ,

2. Each component of each tuple in the body of a relation involves a type name and an
attribute name, but those type and attribute names are usually omitted from tabular
pictures, . .

3. Each attribute value in each tuple in the body of a relation is a value of the applicable
type, but those values are usually shown in some abbreviated form—for example, S1
instead of S#('S1)—in tabular pictures. :

4. The columns of a table have a left-to-nght ordering, but the attributes of a relation do
not. Note: One implication of &us point is that columns might have duplicate names,
or even no names at all. For examme. consider this SQL query:

SELECT S.CITY, S.STATUS * 2, P. CI’NI
FROM s, P; L

What are the column names in the rcsult of this query?
5. The rows of a table have a top-to-bottom orderirig, but the tuples of a relation do not.
6. A table might contain duplicate rows, but a relation does not contain duplicate tuples.

The foregoing is not an exhaustive list of the differences. Others ing_ludé:

» The fact that tables are usually regarded as having at least one column, while rela-
tions are not required to have at least one attribute (see the subsection “Relations with
No Attributes” later in this section) o

m The fact that tables—at least in SQL—are allowed to include nuils, while relations
are certainly not (see Chapter [9) -

® The fact that tables are “fiat” or two-dlmenslonal. whllc rcIauons are n-dxmensmnal
(see Chapter 22)

It follows from all of the foregoing that, in order to agr;:e that a tabular picture can .

properly be regarded as representing a relation, we have to agree on how to “read"” such a

picture; in other words, we have to agree on certain ruies of interpretation for such pic-
tures. To be specific, we have to agree that there is an underlying type for each column:

~ that each attribute value is a value of the relevant type; that row and column orderings are

irrelevant; and that duplicate rows are not allowed. If we can agree on all of these rules of
interpretation, then—and onfy then—we can agree that a table is a reasonable picture of a
relation, - ,

So we can now see that a table and a relation are indeed not quite the same thing (even
though it is often convenient to pretend they are). Rather, a relation is what the definition
says it is, 2 rather abstract kind of object, and a table is a concrete picture, typically on

152 Part I | The Relational Model

FUSGRY.

A "memﬁﬂwm@ﬁd}gﬁﬁwwgwa-;z»%yfawgem.mmwmﬁ AT ;

paper, of such an abstract object. They are not (to repeat) quite the same. Of course, they
are very similar . . . and in informal contexts, at least, it is usual, and perfectly acceptable,
to say they are the same. But when we are trying to be precise—and right now we are try-
ing to be precise—then we do have to recognize that the two concepts are not exactly iden-
tical,

That said, it is worth pointing out too that in fact it is a major advantage of the rela-
tional model that its basic abstract-object, the relation, does have such a simple representa-
tion on paper. It is that simple representation that makes relational systems easy to use and
easy to understand, and makes it easy to reason about the way relational systems behave.
Nevertheless, it is unfortupately also the case that that simple representation does suggest
some things that are not true (e.g., that there is a top-to-bottom tuple ordering).

Relation-Valued Attributes

As noted in Section 6.3, any type whatsoever can be used as the basis for defining rela-
- tional attributes, in general. It follows that relation types in particular, since they are cer-
tainly types, can be used as the basis for defining attributes of relations; in other words,
attributes can be relation-valued, meaning we can have relations with attributes whose
values are relations in turn. In other words, we can have relations that have other relations
uested inside themselves. An example of such a relation is shown in Fig. 6.2. Observe with
respect to that relation that (2) attribute PQ is relation-valued: (b) the cardipality and
degree are both five: and in particular (c) the empty set of parts supplied by supplier S5 is
represented by a PQ value that is an empty set (more precisely, an empty relation).
The main reason we mention the possibility of relation-valued attributes here is that,
historically, such a possibility has usually been regarded as illegal. Indeed, it was so
regarded in earlier editions of this book. For example, here is a lightly edited excerpt from

the sixth edition:

st SNAME STATUS | CITY PQ

Sl | Smith 20 | Londen Pt | QTY
Pl | 300
P2 | 200
li:& 100

52 | Jones 10 | Paris P$ | QTY
Pl | 300
P2 400

S5 | Adams 30 | Athens PF | oTY

Fig. 6.2 Arelation with a relation-valued attribute

-

Chapter 6 [Relations 153

Note that all column values are atomic . . . That is, at every row-and-column position {sic]
in every table [sic] there is always exactly one data value. never a group of several values.
Thus, for example, in table EMP, we have

DEPTEF | EMP#
D1 El ’
1) E2

instead of

DEPT4# | EMP}
v} | El,E2

.

Column EMP# in the second version of this table is an example of what is usually called a
repeating group. A repeating group’is a column . . . that contains several values in each
row {different numbers of values in"different rows, in general), Relational databases do
not allow repeating groups; the second version of the table above would not be permitted
in a relational system. SRR

And later in the same book, we find: “Domams (x e., types) contain atomic values
only . .. [Therefore,] relations do not conrain repeating groups. A relation satisfying this
condition is said to be normalized, or equivalently to be in first normal form . . . The term
relation is always taken to mean a normahzed relation in the context of the relational
model.”

These remarks are not correct, however (at least not in their entirety): They arose
from a misunderstanding on this writer’s part of the true nature of types (domains). For
reasons to be discussed in Chapter 12 (Section 12.6), it is unlikely that this mistake will
have caused any very serious errors in practice; nevertheless, apologies are still due to
anyone who might have been misied. At least the sixth edition was correct when it said
that relations in the relational model are always normalized! Again, see: Chapter 12 for
further discussion.

Relations with No Attﬁﬁutes

Every relation has a set of attributes: and, since the empty set is certainly a set, it follows
that it must be possible for a relation to have the empty set of attributes, or in other words
no attributes at all. (Do not be confused: We often talk about “empty relations,” meaning
relations whose body is an cmpty set of tuples, but here, by contrast, we are talking about
relations whose heading is an empty set of artributes.) Thus, relations with no attributes
are at least respectable from.a mathematical point of view. What is perhaps more surpris-
ing is that they turn out to be extremely important from a practical point of view as well!
In order to examine this notion more closely, we first need to consider the question of
whether a relation with no attributes can contain any tuples. The answer (again perhaps
surprisingly) is yes. To be more specific, such a relation can contain ar most one tuple:

154

Part I | The Relational Model

namely, the O-tuple (i.e., the tuple with no components; it cannot contain more than one
such tuple, because all O-tuples are duplicates of one another), There are thus precisely
two relations of degree zero—one that contains just one tuple, and one that contains no
tuples at all. So important are these two relations that, following Darwen [6.5], we have
pet names for them: We call the first TABLE_DEE and the other TABLE_DUM, or DEE
and DUM for short (DEE is the one with one tuple, DUM is the empty one). Note: It is
hard to draw picrures of these relations! Thinking of relations as conventional tables
breaks down, somewhat, in the case of DEE and DUM.

Why are DEE and DUM so important? There are several more or less interrelated
answers to this question. One is that they play a role in the relational algebra—see Chap-
ter 7—that is akin, somewhat, to the role played by the empty set in set theory or zero in
ordinary arithmetic. Another has to do with what the relations mean (see reference [6.5]);
essentially, DEE means TRUE, or yes, and DUM means FALSE, or no. In other words,
they have the most fundamental meanings of all. (A good way to remember which is
which is that the “E™s in DEE match the “e” in yes.)

In Tutorial D, the expressions TABLE_DEE and TABLE_DUM can bc used as short-
hand for the relation selector invocations .

RELATION { } { TUPLE { } }
and '

RELATION { } { }

respectively.

It is not possible to go into more detail on thxs toplc at this juncture; suffice it to say
that you will encounter DEE and DUM many times in the pages ahead. For further discus-
sion, see reference {6.5].

Operators on Relations

We mentioned the relational selector, assignment, and equality comparison operators
briefly in Section 6.3, Of course, the comparison operators “<” and “>" do not apply to
relations: however, relations are certainly subject to other kinds of comparisons in addi-
tion to simple equality, as we now explain.

Relational comparisons: We begin by defining a new kind of <bool exp>, <relation
comp>, with syntax as follows:

<relation exp> <relation comp op> <relation exp>

The relations denoted by the two <relation exp>s must be of the same typc, and <relation
comp op> must be one of the following:

(equals)

(not equals)

(subset of)

(proper subset of}
(superset of)
(proper superset of)

umunn i

i,

-

Chapter 6 | Relations 155

Then we allow a <relation comp> to appear wherever a <boo! exp> is expected—for exam-
ple, in 2 WHERE clause, Here are a couple of examples:

4

. s {cITy y = P (CITY } :
Meaning: Is the projection of snppliers over CITY equal to the projection of parts over
CITY?

2.8 {St}DSP{Sst)

Meaning (consmerably paraphrased): Are there any suppliers who supply no parts at
all?

One particular relational comparison often needed in practice is :i test to see whether
a given relation is equal to an empty relation of the same type (i.e., one that contains no

" tuples). It is uscful to have a shonhand for this particular case. We therefore define the

expression

IS_EMPTY (<relat1on epr)‘
to retmn 'I'RUE if the relation’ denoted by the <relation exp>is empty and FALSE otherwise.

QOther operators. Another common requirement is to be able to test whether a given tuple

t appears in a given relation r: !

-

t er’

This expression retuns TRUE if ¢ nppea.rs in r and FALSE otherwise (is the ser
membership operator; the expression ¢t € r can be pronounced ‘t belongs tor"or“tisa
member of 7 or, more simply, just *t {is] in 7).

We also need to be able to extract the single tuple from a rclnnon of cardmahty one:

68 b2

TUPLE FROM r

This expression raises an excepuon if r does not contam cxactly one :uplc. otherwise, it
returns just that one tuple.

In addition to the operators discussed so far, there are also all of the _generic opera-
tors—join, restrict, project, and so0 on—that go to make up the relational algebra. We defer
detailed treatment of these operators to the next chapter. -

Relation type inference: Just as the tuple type naming scheme described in Section 6.2
facilitates the task of determining the type of the result of an arbitrary tuple expression, so
the relation type naming scheme described in Section 6.3 facilitates the task of determining
the type of the result of an arbitrary relational expression. Chapter 7 goes into detail on this
issue; here we content ourselves with one simple example. Given the suppliers retvar S, the
expression

s { s¢, cITY }
1
yields a result (a relation) whose type is:
RELATION { S# S#, CITY CHAR }

Analogous remarks apply to all possible relational expressions.

. - - e —
[T ; T
K PR S . L. . . PR
e M e R .
ek Lol N -

- I, g el

156

Part I | The Relational Model

ORDER BY: For presentation purposes it is highly desirable to support an ORDER BY
operator, as SQL does (see Chapter 3). We omit a detailed definition here, since the seman-
tics are surely obvious. Note, however, that:
» ORDER BY works (effectively) by sorting fﬁplcs into some specified sequencc,'ahd
yet “<" and ">" are not defined for tuples (!).
a ORDER BY is not a relational operator, since what it returns is not a relation.
® ORDER BY is also not a furniction, since there are many possible outputs for a given
input, in general.
As an example of this last point, consider the effect of the operation ORDER BY
CITY on the suppliers relation of Fig. 6.1. Clearly, this operation can return any of four

distinct results. By contrast, the operators of the relational algebra certainly are func-
tions—for any given input, there is always just one possible output.

65 RELATION VARIABLES

Now we tumn to relation variables (relvars for short). Recall from Chaptér 3 that relvars
come in two varieties, base relvars and views (also called real and virtual relvars, respec-
tively). In this section, we are primarily concerned with base relvars specifically (views are.

_ discussed in detail in-Chapter 10); note, however, that anything we say here that talks in

terms of refvars, unqualified, is true of relvars in general, views included.

Base Relvar Definition

Here is the syntax for defining a base relvar:

VAR <relvar name> BASE <relation type>
<candidate key def list>
{ <foreign key def list> | ;

The <relation type> takes the form
RELATION { <attribute commalist>)}

(it is in fact an invocation of the RELATION type generator, as discussed in Section 6.3).
The <candidate key def list> and optional <foreign key def list> are explained later. Here
by way of example are the base relvar definitions for the suppliers-and-parts database

(repeated from Fig. 3.9):

VAR S BASE RELATION
st s§,
SNAME NAME,
STATUS INTEGER,
CITY CHAR }
PRIMARY KEY { 5% } ;

Chapter 6 | Relations 157

VAR P BASE RELATION
{ Pt Pt,
PNAME NAME,
COLOR COLOR,
WEIGHT WEIGHT,
CITY CHAR }
PRIMARY KEY { P% } ;

VAR SP BASE RELATION

ré PY, . .
"QTY QTY } :
PRIMARY KEY { S%, P})
FOREIGN KEY { S# } REFERENCES §
FOREIGN KEY { P#)} REFERENCES P ;)
Explanation:

. These three base relvars have (relation) types as follows:

RELATION {(S¥ S#, SNAME NAME, STATUS INTEGER, CITY CHAR }

RELATION { P# P#, PNAME _NaME, COLOR COLOR,
;?§W. WEIGHT WEIGHT, CITY CHAR }

RELATION { S& S#, P# P%, o'r'y QTY 1}

The terms heading, body, ‘artn'b_ur_e. tuple, degree (and so on) previously defined for -

relation values are all interpreted inthe obyious way to apply to relvars as well.

All possible values of any given relvar are of the same relation type—namely, the
relation type specified (indirectly, if the given relvar is a view) in the relvar defini-
tion—and therefore have the same heading.

When a base relvar is defined, it is given an initial value that is the empty relation of
the applicable type.

Candidate key definitions are explained in detail in Chapter 9. Prior to that point, we
will simply assume that each base relvar definition includes exactly one <candidate
key def>, of the following particular form:

PRIMARY KEY { <attribute name commalist> }

Foreign key definitions are also explained in Chapter 9. o

Defining 2 new relvar causes the system to make entries m the catalog to describe that
relvar,

As noted in Chapter 3, relvars, like relations, have a cotresponding predicate:
namely, the predicate that is common to all of the relations that are possible values of
the relvar in question. In the case of the suppliers relvar S, for example, the predicate
looks something like this: -

The supplier with supplter number S# is under contract, is named SNAME, has staius
STATUS, and is located in city CITY

We assurne that a means is available for specifying default values for attributes of
base relvars. The default value for a given attribute is a value that is to be placed in
the applicable attribute position if the user does not provide an explicit value when
inserting some tuple. Suitable Tutorial D syntax for specifying defaults might take

3 i SRR e B

_.-_1 " . '-"‘.,_‘_ Lo

158

Part IT | The Relational Model

the form of a new clause on the base relvar definition, DEFAULT { <defa::lr spec
commalist> } say, where each <default spec> takes the form <artribute name>
<default>. For example, we might specify DEFAULT { STATUS 0, CITY '’ } in the
definition of the suppliers relvar S. Nore: Candidate key attributes will usually,
though not invariably, have no defauit (see Chapter 19). '

Here is the syntax for dropping an existing base relvar:
DROP VAR <relvar name> ; y

This operation sets the value of the specified relvar to “empty” (i.e., it deletes all niples in
the relvar, loosely speaking); it then deletes all catalog entries for that relvar, The telvar is
now no ionget known to the system. Note: For simplicity, we assume the DROP will fail
if the relvar in question is still being used somewhere-—for example, if it is referenced in
some view definition somewhere.

Updating Relvars

The relational model includes a relational assignment operation for assigning values
to—that is, updating—relvars (base relvars in particular). Here, slightly simplified, is the
Tutorial D syntax: '

<relation assignment>
1:= <relation assign commalist> ;

<relation assign>
ts= <relvar name> 1= <relation exp>

The semantics are as follows:’ First, all of the <relation’exp>s on the right sides of
the <relation assign>s are evaluated; second, the <relation assign>s are executed in
sequence as written. Executing an individual <relation assign> involves assigning the
relation resulting from evaluation of the <relation exp> on the right side to the relvar iden-
tified by the <relvar name> on the left side (replacing the previous value of that relvar).
Of course, the relation and relvar must be of the same type.

By way of example, suppose we are given two further base relvars S' and SP' of the
same types as the suppliers relvar S and the shipments relvar SP, respectively:

VAR S' BASE RELATION
{ St S#, SNAME NAME, STATUS INTEGER, CITY CHAR } ... ;

VAR SP' BASE‘ RELATION
{ S S&, P} PR, QTY QTY } ... ;

Here then are some valid examples of <relation assignment>:

l. s* 1« 5, Sp' = SP ;
2. §' := S WHERE CITY = 'London' ;
3. s* ;= 5 WHERE NOT (CITY = ‘Parisg’ } ;

Note that each individual <relation assign> can be regarded as both (a) retrieving the
relation specified on the right side and (b) updating the relvar specificd on the left side.

7 Except as noted in footnote 9 in Chapter 5.

_

- -

Chapter & | Relations 159

- Now suppose we change the second and third cxamples by replacmg relvar S' on the
left side by relvar S in each case:

2. 8 := S WEERE CITY = 'London® ;
3. § := S WHERE NOT { CITY = 'Paris’) ;

Observe that these two assignments are both effectively updates to relvar S—one effec-
tively deletes all suppliers not in London, the other effectively deletes all suppliers in Paris.
For convenience Tutorial D does support explicit INSERT, DELETE, and UPDATE oper-
ations, but each of these operations is defined to be shorthand for a certain <relation

» assign>. Here are some examples: -
I. INSERT s RELATION { TUPLE { S% - .St (s6'),
SNAME NAME ('Smith'),
‘.- STATUS 50,
“ CITY C‘Rome' } } ;
Assignment equivalent:]
S := S UNION RELATION { 'wpz.z { st Sk ('S€'),
SNAME NAME (‘Smith‘),
\ : - " STATUS 50,
e : o~i. 'CITY ‘Rome‘ } } j

Note, incidentally, that this a551gnment will succeed if the specxﬁed tuple for supplier
86 already exists in relvar S. In practice, we might want to refine the semantics of
INSERT in such a way as to raise an exception if an attempt is made “to insert a tuple
that already exists.” For simplicity, however, we ignore tlus refinement here. Analo-
gous remarks apply to DELETE and UPDATE also.

2. DELETE S WHERE CITY = ‘Paris’' ;

[y

Assignment equivalent: _
§ := S WHERE NOT { cITY = 'Paris')

7
3. UPDATE S WHERE CITY = 'Paris‘ ,
{ STATUS := 2 * STATUS,
CITY t= ‘Rome’ } ;

Assignment equivalent:

§ := WITH (§ WHERE CITY = ’Parist) AS T1 i
{ EXTEND T1 ADD { 2 * STATUS AS NEW sTarUs
‘Rome'! AS NEW_CITY)}) AS T2 ,
T2 { ALL BUT STATUS, CITY } AS T3 ,
{ T3 RENAME { NEW_STATUS AS STATUS, .
' NEW_CITY AS CITY).} AS T4 :
(§ MINUS T1) UNION T4 ;

As you can see, the assignment equivalent is a little comphcated in this case—in fact,
it relies on several features that will not be explained in detail until the next chapter.
For that reason, we omit further discussion here.

X
|
.

For purposes of referejnce, here is a slightly simplified summary of the syntax of
INSERT, DELETE, and UPDATE:

INSERT <relvar name> <relation exp> ;

DELEYE <relvar name> [WHERE <bool exp>] ;

Ty ,‘!—z‘.n‘—f“q._:vrnza w:-.-.-...-!.-r?- -
A
,) 10

160

Part IT | The Relational Model

UPDATE <relvar name> [WHERE <bool exp>)
) { <attribute update commalist> } ;

An <artribute update> in turn takes the form
<attribute pame> = <exp>

Also, the <boo! exp> in DELETE and UPDATE can include references to attributes of the
target relvar, with the obvious semantics. .

We close this subsection by stressing the point that relational assignment, and hence
INSERT, DELETE, and UPDATE, are all set-level operations.® UPDATE, for example,
updates a ser of tuples in the target relvar, loosely speaking. Informally, we often talk of
(e.g.) updating some individual tuple, but it must be clearly understood that:

1. We are really talking about updating a set of tuples, a set that just happens to have
~ cardinality one. : '

2. Sometimes updating a set of tuples of cardinality one is impossible!

Suppose, for example, that the suppliers relvar is subject to the integrity constraint
(see Chapter 9) that suppliers SI. and S4 must have the same status. Then any “single-
tuple™ UPDATE that tries to change the status of just one of those two suppliers must fail.
Instead, both must be updated simultaneously, as here: .

UPDATE S WHERE St = S# ('S1') OR S# = 5§ ('S4’)

: { STATUS := some value } ;

To pursue the point 2 moment longer, we should now add that to talk (as we have just
been doing) of “updating a tuple”-—or set of tuples—in a relvar is really rather sloppy.
Like relations, tuples are values and cannot be updated, by definition. Thus, what we
really mean when we talk of (for example) “updating tuple £ to ¢*” is that we are replacing
the tuple ¢ (the tuple value 1, that is) by another tuple t* (which is, again. a tuple value).
Analogous remarks apply to phrases such as “updating attribute A" within some tuple. In
this book, we will continue to talk in terms of “updating tuples” and “updating attributes
of tuples"—the practice is convenient—but it must be understood that such usage'is only
shorthand, and rather sloppy shorthand at that.

Relvars and Their Interpretation |
We conclude this section with a reminder to the effect that (as explziined in Chapicr 3, Sec-
tion 3.4) (a) the heading of any given relvar can be regarded as a predicate, and (b) the

tuples appearing in that relvar at any given time can be regarded as true propositions,
obtained from the predicate by substituting arguments of the appropriate type for the

¥ In passing, we note that, by definition. the CURRENT forms of DELETE and UPDATE in SQL—see
Section 4.6—are fuple-level (or row-level, rather), and are therefore contraindicated.

¥ Of course. none of this is to say that we cannot update tuple variables. As explained in Section 6.2.
however, the notion of a tople variable is not part of the relational model, and relational databases do not
contain such variables.

Chapter 6 [Relations 161

parameters of that predicate (“instantiating the predicate”). We can say that the predicate
corresponding to a given relvar is the intended interpretation, or meaning, for that rel-
var, and the propositions corresponding to tuples of that relvar are understood by conven-
tion to be true ones, In fact, the Closed World Assnmption (also known as the Closed
World Interpretation) says that if an otherwise valid tupie——that is, one that conforms to
the relvar heading—does not appear in the body of the relvar, then we can assume the cor-
responding proposition is false. In other words, the body of the relvar at any given time
contains a/! and only the tuples that correspond to true propositions at that time. We will
have considerably more to say on such matters in Chapter 9,

|
i
E
i

6.6 SQL FACILITIES

Rows

SQL does not support tuples, as siich, at all; instead, it supports rows, which have a left-
to-right ordering to their componcms Within a given row, the component values—which °
are called column values if the row is immediately contained in a table, or field values oth-
erwise—are thus identified primarily.by their ordinal position (even when they aiso have

S names, which.is not always the case). Row types have no explicit row type name. A row
value can be “selected” (the SQL term is constructed)-by means of an expression—actu-
ally a <row value constructor>—of the form:

[ROW] (<exp commalist>)

The parentheses can be omitted if the commalist contains just one <exp>; the keyword
ROW must be omitted in this case, and is optional otherwise, The commalist must not be
empty (SQL does not support a “0-row™). Here is an exarmple:

ROW (PH('P2'), PH('P4’),’ QTY(7))
This expression denotes a row of degree three,

- Aswe saw in Chapter 5, SQL also supports a ROW fype constructor (its counterpart to
the Tutorial D TUPLE type generator) that can be invoked in the definition of. for example,
some table column or some variable.!? Here is an example of the latter case:

DECLARE ADDR ROW (STREET CHAR(S50),
CITY CHAR(2S),

STATE CHAR(2),
1P CHAR(S)) :

-~ Row assignments and comparisons are supported, with the caveat that the only strong
typing that applies is the limited form described in Chapter 5, Section 5.7. Note in particu-
lar, therefore, that the fact that r/ = 72 is true does not imply that rows rI and r2 are the .
same row. Moreover, “<” and “>” are legal row comparison operators! The details of such
comparisons afe complicated, however, and we omit them here; see reference [4.20] for
further discussion.

10 Do not be confused: SQL’s “row vaiue constructor” is basically a tuple selector, while its “row type
constructor” is basically the TUPLE type generator (speaking very loosely!).

RERH PR R W T inet e

B R AL e L BT SR T

e

Gele il

:
g
o

162

Part [[| The Relational Model

SQL does not support row versions of any of the regular refational operators (“row
project,” “row join,” etc.), nor does it provide direct counterparts to WRAP and
UNWRAP. It also does not support any “row type inferencing”—but this latter point is
perhaps unimportant, given that SQL supports almost no row operators anyway.

Table Types

SQL does not support relatipns, as such, at all; instead, it supports rables. The body of a
table in SQL is not a set of tuples but a bag of rows instead (a bag, also known as a
multiser, is a collection that like a set has no ordering, but unlike a set permits duplicate
elements); thus, the columns of such a table have a left-to-right ordering, and there can be
duplicate rows. (Throughout this book, however, we will apply certain disciplines to guar-
antee that duplicate rows never occur, even in SQL contexts.) SQL does not use the terms
heading or body.

Table types have no explicit table typc name. A table value can be “selected” (once
again, the SQL term is constructed) by means of an expressmn—-actually a <rable value
constructor>—of the form:

VALUES <row value constructor commalist>

(where the commalist must not be empty). Thus, for example, the expression

VALUES { P#('P1l'), P#('P2'), QTY(S5)
(PE('P1'), PH#('P3'), QTY(3)
(P#('P2'), P#('P3'), QTY(2)
{ P#{'P2'), P#('P4’}, QTY(7)
{
{

L

P#('P3'), P#('P5*), QTY(4)
P#('P4'), PE('P6'), QTY(B)

evaluates to a table looking something like the relation shown in Section 6.3, except that it
has no explicit column names.

SQL does not really support an explicit counterpart to the RELATION type generator
at all. It also does niot support an explicit table assignment operator (though it does support
explicit INSERT, DELETE, and UPDATE statements), Nor does it support any table com-
parison operators (not even “="). However, it does support an operator for testing whether
a given row appears in a given table:

<row value constructor> IN <table axp>
It also supports a counterpart to the TUPLE FROM operator:

{(<table exp>)

If such an expression appears where an mdxvxdual row is rcqmred. and if the <rable exp>
denotes a table that contains exactly one row, then that row is returned; otherwise, an
exception is raised. Nore: We remark in passing that <table name> is not a valid <table
exp> (1). '

Chapter 6 [Relations 163

Table Values and Variables

SQL unfortunately uses the same term /able to mean both a table vaiue and a table vari-
able, In the present section, therefore, the term table must be understood to mean either a
“table value or a table variable, as the context demands. Here first, then, is the SQL syntax
for defining a base table: '

CREATE TABLE <base table name>
{ <base table element commalist>) ;

Each <base table element> is either a <column definition> or a <constrainr>:!!

s The <constraint>s specify certain integrity constraints that apply to the base table in
qucstion We defer detailed discussion of such constraints to Chapter 9, except to note
that, since they permit duplicate rows, SQL tables do not necessarily have a primary
key (or, more fundamentaily, any candidate keys).

m The <column definition>s—thetg must be at least one—take the following general-
form: e -
<column . name> <type name> [<defau.lt spec> |
The optional <default spec> specifies the defaulr value, or simply defauls, that is 1o be
placed in the applicable column if the usér does not provide an explicit value on
INSERT {(see Chapter 4, Section 4.6, subsection “‘Operations Not Invoiving Cursors,”
for an example). It takes the fom DEFAULT <default>, where <defauir> is a literal, a
niladic built-in operator name,'? or the keyword NULL (see Chnpter 19). If a given
column does not have an explicit default, it is implicitly assumed to have a default of
null—that is, null is the “default default” (as in fact is always the case in SQL). Note:
For reasons beyond the scope of this book. the default must be null if the column is of
a user-defined type (as already mentioned in Chapter 4). It must also be null if the col-
umn is of some row typc. and it must be either null or empty (specxﬁcd as ARRAY{])
if the column is of an array type.

For some examples of CREATE TABLE, see, for examplc, Fig.:4.1 in Chapter 4.
Note that (as we already know) SQL does not support table-valued columns, nor does it
support tables with no columns at all. It does support ORDER BY, together with analogs
of most of the operators of the relational algebra (see Chapters 7 and 8). However, its
rules for “table type inferencing” (though they do necessarily exist) are at least partly
implicit; they are also complicated, and we omit the specifics here.

An existing base table can be dropped. Here is the syntax:

DROP TABLE <base tablc’. name> <behavior> ;

where (as in the case of DROP TYPE in Chapter 5) <behavior> is either RESTRICT or
CASCADE. Loosely, RESTRICT means the DROP will fail if the table is currently in use

U A <base table element> can also take the form LIKE T, which allows some or all of the column defini-
tions for the basc wable being defined to be copied from some existing nomed table 7.

12 A niladic operator is one that takes no explicit operands. CURRENT_DATE is an example.

164

Part II | The Relational Model

anywhere, while CASCADE means the DROP will always succeed and will cause an
implicit DROP ... CASCADE for everything currently using the table,
An existing base table can also be altered by means of the statement ALTER TABLE.
The following kinds of “alterations” are supported:
¥ A new column can be added.
® A new default can be defined for an existing column {(replacing the previous one, 1f
any). y
An existing column default can be deleted.
An existing column can be deleted.
A new integrity constraint can be specified.
An existing integrity constraint can be deleted.

We give an example of the first case only:

ALTER TABLE S ADD COLUMN DISCOUNT INTEGER DEFAULT -1 ; .
This statement adds a DISCOUNT column (of type INTEGER) to the suppliers base
table. All existing rows in that table are extended from four columns to five: the initial

value of the new fifth column is -1 in every case.
- Finally, the SQL INSERT, DELETE and UPDATE statements havc already been dis-

' cussed in Chaptcr 4.,

Structured Types

- Caveat: The portions of the SQL standard that are relevant to this subsection are hard to

undefsfand. Whar follows is this writer's best attempt to make sense of the material.
Here first, then, repeated from Chapter 5 (Section 5, 7), is an example ‘of a su'uctured
type dcﬁnmon . ,

-y

CREATE 'nm: POINT AS { X FLOAT, Y FLOAT) NOT FINAL]
Type POINT can now be used in the dcﬁmnon of variables and columns. For example:

CRBATE 'I'ABLE NADDR
{ NAME ... ,
ADDR ... ,
LOCATION POINT ... ,
ees) 2

Now, we never said as much explicitly in Chapter 5, but Qe at least implied that
SQL's structured types were scalar types specifically, just as the Tutorial D analog of the

foregoing POINT type was a scalar type. In some respects, however, they are closer to
Tutorial D’s ruple types. 13 Certainly it is true that we can access the components

- (“attributes”) of a given POINT value, rather as if it were a tuple, Dot qualification syntax

is used for this purpose, as in the following exampies (note that explicit correlation names
are required, as the exampies indicate):

13 Except that structured types have a left-to-right ordering to their artributes, whereas tuple types do not.

l
;

Chapter 6 [Relations 165

SELECT NT.LOCATION.X, NT.LOCATION.Y
FROM NADDR AS NT
WHERE NAME = ... ;

UPDATE NADDR AS NT
SET NT.LOCATION.X = 5.0
* WHBRE NAME = ... i

When used as in the foregoing exaﬁplc. an SQL s&ucturcd type effectively behaves
as if it were a simple row type (again, see Section 5.7 in Chapter 5), except that:

= The components are called auributes instead of fields.
" More importantly, structured types, unlike row types, have names (we will revisit this
point at the very end of this section).

So far, then, SQL’s structured types look as if they might not be t00 hard to under-
stand. But—and it is a big but!~—the foregoing is not the end of the story. 14 1n addition to
the foregoing, SQL also aliows z base table to be defined to be “OF" some structured

type. in which case a number of further considerations come into play. In order to discuss

some of those considerations, let us first cxtcnd the definition of type POINT as follows:

CREATE TYPE POINT AS ({ X PLOAT. Y FLOAT) NOT FINAL
REF 1S SYSTEM GENER&IED rJ,

Now we can define a base table to be “OF" thxs typc—--for example:

CREATE TABLE POINTS OF POINT y
(REF 15 FOINTI SYSTEM GENERATED ...) ;

Explanation:

1. When we define a structured type 7, the system automatically defines an associated
reference rype (“REF type™) called REF(T). Values of type REF(T") are “references”
to rows within some base table!® that has been defined to be “OF™ type T (see point
3). In the example, then, the system automatically defines a type called REF(POINT),
whose values are references to rows within base tables that are defined to be “OF”
qu:PCNTWT PR

2. The specification REF IS SYSTEM GENERATED in a CREATE TYPE statement
means the actual values of the associated REF type are provided by the system {other
options—for example, REF 1S USER GENERATED—are available, but we omit the
details here). Note: In fact, REF 1S SYSTEM.GENERATED is the default: in our
example, therefore, we could have left our original definition of type POINT un-
changed if we had wanted.

3. Base table POINTS has been defined to be “OF” the structured type POINT. The key-

word OF is really not very appropriate, however, because the table is not actually “of”
the type in question, and neither are its rows! 16

!

14 Nor is what follows! See Chapters 20 and 26 for further discussion.

!5 Or possibly some view. Detsils of the view case are beyond the scope of this book.

16 Note in particular, therefore, that if the declared type of some parameter P to some operator Op is
some structured type ST. a row from z base table that has been defined to be “OF" type ST cannot be
passed as a corresponding argument to an invocation of that operator Op.

P

ca—

e e——a— e —

166

Bari II | The Relational Model

® First of all, if the table had just one column and that column were of the structured
type in question, ST say, then we might say—though not in SQL!-—something to
the effect that the table is of type TABLE(ST) and its rows are of type ROW(ST).

= But the table does not have just one column, in general; rather, it has one column
for each attribute of ST. Thus, in the example, base table POINTS has two columns
X and Y; it explicitly does not have a column of type POINT.

» Furthermore, that table has one extra column as well: namely, a column of the
* applicable REF type. However, the syntax for defining that column is not the nor-'
" mal column definition syntax but instead looks like this:

REF IS <column name> SYSTEM GENERATED

This extra column is called a self-referencing colwmn. it is used to contain unique
IDs or “references” for the rows of the base table in question. The ID for a given
row is assigned when the row is inserted and remains associated with that row unil

_it is deleted. In the example, therefore, base table POINTS actually has hree col-
umas (POINT#, X, and Y, in that order), not just two. Note: It is not at all clear why
it should be necessary to define the table to be “OF” some structured type in the
first place, instead of just defining an appropriate column in the usual way, in order
to obtain this “unique ID" functionality, but our explanations are in accordance
with the way SQL is defined.

As an aside, we note that (perhaps surprisingly) a SYSTEM GENER.ATED column
can be a target column in an INSERT or UPDATE operation, though special consxdcr-
ations apply. We omit the details here. P

4. Table POINTS is an example of what the standard calls. not very aptly, both a ryped
table and a referenceable table. As the standard puts it: “A table ... whose row type is
derived from a structured type is called a typed table. Only a base !nble or'a view can
be a typed table.” And elsewhere: “A referenceable table is necessarily “also a typed

- table . .. A typed table is called a referenceable table.”

Now, it seems that the foregoing features were introduced in SQL:1999 pnmanly to
serve as a basis for incorporating some kind of “object functionality” into SQL., 17 and we
will discuss that functionality in detail in Chapter 26. But nothing in the standard says the
features in question can be used only in connection with that functionality, which is why
we describe them in this chapter.

_ One final point: Recall from Chapter 5 that there is no expliicit “defirie tuple type”
operator in Tutorial D; instead, there is a TUPLE type generator, which can be invoked in
(e.g.) the definition of a tuple variable. As a consequence, the only names tuple types have
in Tutorial D are names of the form: ‘

TUPLE { Al TI, A2 T2, ..., An Tn } ‘
One important conscquence is that it is immediately clear whcn two tuplc types are in fact
one and the same, and whcn two tuples are of the same typc '

17 The fact that SQL structured types always have an associated REF type, even though that REF type
serves no purpose except when the structured type in question is used as the basis for defining a “typed
table.” strongly suggests this conjecture is correct,

Chapter 6 | Relations 167

ot
T e

Now, row types in SQL are similar to Tutorial D’s tuple types in the foregoing respect.
But structured types are different; there is an explicit “define structured type™ operator, and
structured types do have additional explicit names. By way of example, consider the fol-
lowing SQL definitions:)
CREATE TYPE POINT1 AS (X FLOAT, Y FLOAT) NOT FINAL ;
CREATE TYPE POINT2 AS { X FLOAT, ¥ FLOAT) NOT FINAL ;
DECLARE V1 POINTI ;

DECLARE V2 POINTZ P

-

Note carefully that vanables V1 and V2 are of different types Thus. they cannot be
compared with one another, nor can either one be assigned to the other.

-

67 SUMMARY

In this chapter we have taken a comprehensive look at relations and related matters. We
e began by defining tuples’ precisely, Stressing the points that (a) every tuple contains
exactly one value for each of its attributes, (b) there is no left-to-right ordering to the
attributes, and {(c) every subset of a tuple is a tuple, and every subset of a heading is a head-
ing. And we discussed the TUPLE type generator, tuple selectors, tuple assignment and
equality, and other generic tuple operators.

Then we turned to relations {meaning, more specifically, relation values). We gave a
precise definition, and pointed out that every subset of a body.is a body, and (as with
tuples) every subset of a heading is a heading. We discussed the RELATION type gener- :
ator and relation selectors, and we observed that the attributes of a gwen relation type can e
be of any type whatsoever, in general. L

Note: Tt is worth elaborating on this last point briefly, since there is so much confu-
sion surrounding it in the industry. You will often hear ‘claims to the effect that relationat
attributes can only be of very simple types (numbers, strings, and $o forth). The truth s,
however, that there is absolutely nothing in the relational model to support such claims.
As noted in Chapter 5, in fact, types can be as simple or as.complex as we like, and so we
can have attributes whose values are numbers, or strings, or dates, or times, or audio
recordings, or maps, or video recordings, or geometric points {etc.).

The foregoing message is so important~—and so widely misunderstood—that we state
it again in different terms:

LR TR v D L e 0 o

The question of whét data types are supported is orthogonal to the
question of support for the relational model.

Back to our summary. Next, we went on to state certain properties that all relations
satisfy:

1. They are always normalized.
2. They have no left-to-right ordering to their attributes.

- [VR Y —

168 Part I | The Relational Model

3. They have no top-to-bottom ordering to their tuples.
4. They never contain any duplicate tuples.

We also identified some of the main differences between relations and tables: we dis-
cussed rejation-valued attributes; and we briefly considered TABLE_DEE and
TABLE_DUM, which are the only possible relations with no attributes at all. We
described relational comparisons in some detail, and we took a quick look at certain
other operators on relations (including ORDER BY in particular).

In connection with operators on refations, by the way, you might have noticed that we
discussed the question of user-defined operators for scalar types in some depth in Chapter
5, but did not do the same for relation types. The reason is that most of the relational oper-
ators we need—restrict; project, join, relational comparisons, and so forth—are in fact
built into the relational model itself and do not require any “user definition.” (What is
more, those operations are generic, in that they apply to relations of all types, loosely
speaking.) However, there is no reason why those built-in operators should not be aug-
mented 'with a set of user-defined ones, if the system provides a means for defining them.

We remind you that the heading of any given relation can be regarded as a predicate
and the tuples of that relation can be regarded as true propositions, derived from that pred-
icate by supplymg argument values of thc appropriate types for the parameters of the
predicate.

Next. we went un to consider base relvars, pointing out that, like relations, relvars
have predicates, The Closed Worid Assumption says we can assume that if an otherwise
valid tuple docs not appear in the body of the reivar, then the commesponding proposition is
falsc

. Next, we discussed relational assignment (and the INSERT, DELETE, and
UPDATE shorthands) in some detail. We emphasized the point that relational assignment
was a set-level operation; we also noted that it was not really correct to speak of “updat-
ing tuples™ or “updating attributes.”

Finally, we sketched the SQL counterpans to the foregoing ideas, where - apphcable
An SQL table is not a set of tuples but a bag of rows (also, SQL uses the same term table
for both table values and table variables). Base tables can be “altered” by means of

~ ALTER TABLE. They can also be defined in terms of structured types, a possibility that
we will be considering in much more detail later in this book (in Chapter 26).

EXERCISES

6.1 What do you understand by the term cardinality?
6.2 Define as precisely as you can the terms tuple and relation.

6.3 State gs precisely as you can what jt means for () two tuples to be equal; (b) two tuple types to
be equal; (c) two relations to be equal; (d) two relation types to be equal.

6.4 Write (a) a set of predicates and (b) a set of Tutorial D relvar definitions for the suppliers-
parts-projects database of Fig. 4.5 (see the inside back cover).

6.5 Write tuple selector invocations for a typxcal tuple from each of the relvars in the suppliers-
pans-projects database.

}

-

’

ar =

Chapter 6 [Relations 169

6.6 Define a local tuple variable into which an individual tupie could be retrieved from the ship-
ments relvar in the suppliers-parts-projects database,

6.7 What do the following Tutorial D expressions denote?
a. RELATION { S# S§, P} P#, J# J§, QTY QTY } { }

b. RELATION { TUPLE { S# Si('Sl"), P PH{'P1l'),
Jf# JE('J1l'), QTY QTY(200))} }

¢. RELATION { TUPLE (} }

d. RELATION { } { TUPLE { } }

¢. RELATION { } { }

6.8 What do you understand by the term first normal form?
6.9 List as many differences as you can think of between relations and tables

-

6.10 Give an example of your own of a relation with (a) one relation-valued attribute and (b) two
such attributes. Also, give two more relations that represent the same infonmation as those relations
but do not involve relation-valued attributes.

6.11 Write an expression that mtumsTRUE if the current value of the parts relvar P is empty and
FALSE otherwise. Do not use the I[S_EMPTY shorthand.
6.12 [n what respects is ORDER BY a rather unusual operator?
6.13 State the Closed World Assumption
6.14 It is sometimes suggested that a relvar is really just a traditional computer file, with “tuples
instead of records and “attributes” instead of ficlds, Discuss
6.15 Give Tutorial D formulations for the following updates to the suppliers-parts-projects data-
base:
a. Insert a new shipment with supplm' number S1, part number P1, pro;ect number J2, quantity
500.
b. Insert a new supplier S10 into table S (the name and city are Smith and New York, respectively.
the status is not yet knownj.
c. Delete all blue parts
d. Delete all projects for which there are no shipments
¢. Change the color of all red parts t0 orange
. Replace all appearances of supplier number S1 by appearances of supplier number $9 instead.

6.16 We have seen that data definition operations cause updates to be made to the catalog. But
the catalog is only a collection of relvars, just like the rest of the database; so could we not use the
regular update operations INSERT, DELETE, and UPDATE to update the catalog appropriately?
Discuss.

6. 17 Inthe body of the chapter. we said that any type whatsoever can be used as the basis for defin-
ing relational attributes, in genml. That qualifier “in general” was there for a reason. however. Can
you think of any exceptions to this general rule?

6.18 What do you understand by the SQL terms column, field. and attribute?

6.19 (Modified version of Exercise 5.23) Consider the SQL type POINT md the SQL table
POINTS as defined in the subsection "Structured Types” in Section 6.6. Type POINT has a represen-

tation involving Cartesian coordinates X and Y. What happens if we replace that type by a revised
type POINT with a representation involving polar coordinates R and @ instead?

r.

o me— b # b ® =

170 Part I | The Relational Model

REFERENCES AND BIBLIOGRAPHY

Ce-Tmmg QW

Most of the following rcfcrcnccs are applicable to all aspects of the relational model, not just to rela-
tions as such.

6.1 E. F. Codd: “A Relational Model of Data for Large Shared Data Banks,” CACM 13, No. 6 (June

1970). Republished in Milestones of Research—Selected Papers 1958-1982 (CACM 25th Anniver-

sary Issue), CACM 26, No. 1-(January 1983). See also the earlier version, “Derivability, Redun-

dancy, and Consistency of Relations Stored in Large Data Banks,” IBM Research Report RJ599:
(August 19, 1969), which was Codd’s very first publication on the relational model.

The paper that started it all. Although now over 30 years old, it stands up remarkably well to
repeated rercading. Of course; many of the ideas have been refined somewhat since the paper
was first published, but by and large the changes have been evolutionary, not revolutionary, in
nature. Indeed, there are some ideas in the paper whose implications have still not been fully
explored.

We remark on a small marter of terminology. In his paper, Codd uses the term fime-
varying relations in place of our preferred relation variables (relvars). But time-varying
relations is really not a very good term. First, relations as such are values and simply do not
“vary with time" (there is no notion in mathematics of a relation having different values at dif-
ferent times). Second, if we s2y in some programming language, for example,

DECLARE N INTEGER ;

we do not call N g “time-varying integer.” we call it an integer variable. In this book. therefore,
we use our “relation variable” terminology, not the “time-varying™ tcrmmology. however, you
should at least be aware of the existence of this larter.

6.2 E. F. Codd: The Relational Model for Database Management Veman 2. Reading, Mass.:
Addiscn-Wesley (1990).

Codd spent much of the late 1980s revising and extending his ongmal model (which he
renamed “the Relational Model Version 1" or RM/V1), and this book is the resuit,. It‘dcscnbes
“the Relational Model Version 2* (RM/V2). The essential difference between RM/V1 and
RM/V?2 is as follows: Whereas RM/V1 was intended as an abstract blueprint for one particular
aspect of the total database problem (essentially the foundational aspect), RM/V2 was intended
as an abstract biueprint for the entire system. Thus, where RM/V1 had just three parts——struc-
ture, integrity, and manipulation—RM/V2 had 18; and those 18 parts include not only the orig-
inal three (of course), but also parts having to do with the catalog, authorization, naming, dis-
tributed database, and various other aspects of database management. For purposes of
reference, here is a complete list of the 18 parts:

.

Authorization ‘ M Manipulation

Basic operators . N Naming

Catalog P Protection
Principles of DBMS design Q Qualifiers
Commands for the DBA S Structure

Functions T Data types

Integrity ’ : V Views

Indicators X Distributed databasc
Principles of language design Z Advanced operators

- mm——

Chapter 6 | Relations 171

The ideas advocated in this book are by no means universally accepted, however (6.7,
6.8]. We comment on one particular issue here. As we saw in Chapter 5, domains (i.e., types)
constrain comparisons. In the case of suppliers and parts, for instance, the comparison S.5# =
SP.P# s not valld, because the comparands are of different types; hence, an attempt to join sup-
pliers and shipments over matching supplier and part numbers will fail. Codd therefore pro-
poses “domain check override™ (DCO) versions of certain of the relational algebra operations.
which allow the operations in question to be performed even'if they involve a comparison
between values of different types. A DCO version of the join just mentioned, for example, will
cause the join to be done even though attributes S.S# and SP.P# are of different types (presum-
ably it will be done on the basis of matching representations instead of matching rypes).

But therein lies the problem. The whole DCO idea is based on a confusion berween types
and representations. Recognizing domains for what they are (i.t., types)—with all that such
recognition entails—gives us the domain checking we want and gives us something like the
DCO capability as well. For éxample, the following expression constitutes a valld representa-
tion-level comparison between a suppller number and a part number:

THESF(S#)-THEPF'(?i)

(both comparands here are of type CHAR). Thus, it is our clmm that the kind of mechanism
discussed in Chapter 5 gives us all the facilities we want, but does so in a manner that is clean,
systematic (i.e., not ad hoc), and fully onhogonaj In pamcular. there is npow no need to clutter
up the relational model with new constructs such as “DCO join” (G).

6.3 Hugh Darwen: *The Duplicity of Duplicate Rows,” inC. J. Date and Huéh Darwen, Relational
Database Writings 1989-1991. Reading, Mass.: Addlson-Weslcy (1992)

This paper was written as further support for the arguments prevmusly presenied in reference
{6.6] (first version) in support of the prohibition against duplicate rows. The paper not only
offers novel versions of some of those same arguments, it also manages t6 come up with some
additional ones. In particnlar, it stresses the fundamental point that, in order to discuss in any
intelligent manner the question of whether two objects are duplicates, it is essential to have a
clear criterion of equality (called a criterion of identiry in the paper) for the clnss of objects
under consideration. In other words, what does it mean for two objects -be they rows in a table
- or anything else, to be “the same™? .

6.4 Hugh Darwen: “Relation- Valued Atuibutes " in C. 1. Date and Hugh Darwen. Relational Data-
base Writings 1989-1991. Reading, Mass.: Addlson-Weslcy (1992,

6.5 Hugh Darwen: “The Nullologist in Relationland.” in C. J. Date and Hugh Darwen, Relational
Database Writings 1989-1991. Reading, Mass.:. Adghson-Wesley (1992). ’

Nullology is. as Darwen puss it, “the study of nothing at all”"—in other words, the study of the
empty set. (It has nothing to do with SQL-style nulis!) Sets are ubiquitous in relational theory,
and the question of what happens if such a set happens to be empty is far from a frivolous one.
In fact, it turns out that very often the empty-set case furns out to be absolutely fundamental.
Note: As far as the present chapter is concemned, the most immediately applicable portions of:
this paper are Sections 2 (*Tables with No Rows™) and 3 (“Tables with No Columans™).

6.6 C. I. Date: “Double Trouble, Double Trouble™ (in two parts), htp:/Awww.dbdebunk.com (April
2002). An earlier version of this paper, “Why Duplicate Rows Are Prohibited.” appeared in Rela-
tional Database Writings 1985-1989. Reading, Mass.: Addison-Wesley (1990).
Presents an extensive series of arguments, with examples, in support of the prohibition against.
duplicate rows. In particular, the paper shows that duplicate rows constitute 2 major oprimiza-
tion inhibitor (see Chapter 18). See also reference (6.3).

-T2

Part Il | The Relational Model

6.7 C. J. Date: “Notes Toward 2 Reconstituted Definition of the Relational Model Version 1
(RM/V1)," in C. J. Date and Hugh Darwen, Relational Database Writings 1989-1991. Reading,
Mass.: Addtson-Weslcy (1992).

Summarizes and criticizes Codd'’s “RM/V1” {see the annotation to reference (6.2)) and offers

an alternative definition. The assumption is that it is crucially important to get “Version 1" right
before we can even think about moving on to some "Version 2.” Nore: The version of the rela-

tional model described in the present book is based on the “reconstituted™ version as sketched

in this paper. and further clarified and described in reference {3.3).
6.8 C. I, Date: “A Critical Review of the Relational Model Version X (RM/V2),” in C. J, Date and
Hugh Darwen. Relational Database Writings 1989-1991. Reading, Mass.: Addison-Wesley (1992).
Summarizes and criticizes Codd’s “RM/V2” [6.2]. _
6.9 C. J. Date: The Daiabase Relational Model: A Retrospective Review and Analysis, Reading,
Mass.: Addison-Wesley (2001).

This short book (160 pages) is offered as a careful. unbiased, retrospective review and assess-
ment of Codd’s relational contribution as documented in his 1970s publications. To be specific.
it examines the following papers in detail (as well as touching on several others in passing):

® “Derivability, Redundancy, and Consistency of Relations Stored in Large Data Banks™ (the
first version of reference [6.1])

“A Relational Mode! of Data for Large Shared Data Banks™ [6.1]

“Relational Completeness of Data Base Sublanguages™ (7.1]

“A Data Base Sublanguage Founded on the Relational Calcuius” [8.1]

“Further Normalization of the Data Base Relational Model” {11.6)

“Extending the Relational Database Model to Capture More Meaning™ [14.7)

. ‘{26421 - . 3
6.10 Mark A. Roth, Henry F. Korth, and Abraham Silberschatz: “Extended Algebra and Caleufus for
Nested Relational Databases,” ACM TODS 13, No. 4 (December 1988). '

Miny people over the years have proposed the possibility of supporting relanon-valucd
attributes; this p r:r is a case in point. Such proposals usually go by the name of “NF* rela-
tions,” where NF“ (pronounced “NF squared™) is short for NFNF and stands for “non first nor-
mal form.” However, there are at least two major differences between such proposals and sup-
port for relation-valued attributes as described in this chapter:

¥ First, NF? relation advocates assume that relation-valued attributes are prohibited in the
reiational model and therefore advertise their proposals as “extensions™ to that model (in
this connection. note the title of reference [6.10]).

® Second, the NF2 advocates are corect—they are extending the relational model! For exam-
ple. Roth ez al. propose an extended form of union that, in our terms, (a) ungroups both
operands recursively until they involve no relation-valued attributes at all, either directly or
indirectly; (b) performs a regular union on those ungrouped operands; and (c) finally, recur-
sively (re)groups the result again. And it is the recursion that constitutes the extension. That
is, while any specific extended union is shorthand for some specific combination of existing
refational operators, it is not possible to say that extended union in 3eneml is just shonhand
for some combination of existing operators.

““Interactive Support for Nonprogrammers The Relational and Network Approaches™

« st R A 2 i g, Y -

—— o - —— —

cakd

E ‘ .
; I
1 .4 H
3 -k HI
- - i
| CHAPTER 1
-]
L 1 ;"; P
Relatlonal Algebra
7.1 - Introduction _
7.2 Closure Revisited i
7.3 The Original Algebra: Syntax B!
7.4 The Original Algebra: Semantics 1
7.5 Examples
7.6 What Is the Algebra For7
: 7.7 Further Points It
o 7.8 Additional Operators -~ - _ =
7.9 Grouping and Ungrouping | =
710 Summary ;
Exercises
References and Bibliography
7.1 INTRODUCTION
The relational algebra is a collection of operators that take relations as the;f 'c;perands and
retum a relation as their result. The first version of the algebra was defined by Codd in ref-
erences [5.1] and [7.1]; reference [7.1] in particujar has come to be regarded as the source g
of the “original™ algebra, That ongmnl algebra had exghl: operators, twa groups of four
each:
1. The tradmonal set operators union, iniersection, difference, and Cartesian product i
(all of them modified somewhiat to take account of the fact that their operands are,

speclﬁcally, relations instead of arbitrary sets)

2. The specxal relational operators restrict (also known as select), project, jom. and
divide !

Fig. 7.1 gives an informal picture of how these operators work.

TR IR T

173

174 Part [l | The Relational Model
Product =3

Project / 1, ‘g
d % yitaly} i
r‘.& r,' c bt x| :
o1y :
£ I c | x ;
c iy 3

%

Intersection Ditference i
¥

A :Hg‘.q"-)
S 3

-‘%}

¥

3

(N;t(urél) Jain \ ' /—» Divide{\L
a

at | bt | ¢l al{bl| et
a2 | b1 b2} c2 a2 | b1t ¢t
a3 | b2 b3 i{c3 a3 |b2(c2 c

[\
o2

- a‘
.
-§.‘
i
¢
-
o
3
=
K
g

Q o M p m
WX N X

Fig. 7.1 The original eight operators (overview)

Now, Codd had a very specific purpose in mind, which we will examine in the next
chapter, for defining just the eight operators he did. But those eight operators are not the
end of the story; rather, any number of operators can be defined that satisfy the simple
requirement of “relations in, relations out,” and many additional operators have indeed
been defined, by many different writers. In this chapter, we will discuss the original eight

\

.Chapter 7 | Relational Algebra 175

operators first—not exactly as they were originally defined but as they have since
become—and use them as the basis for discussing a variety of algebraic ideas; then we
‘will go on 1o consider some of the many useful operators that have subsequently been
added to the original set.

Before we can discuss the algebra in detail, however, there are a few more prelimi-
nary remarks we need to make:

® First of all, the opcrafors apply to all relations, loosely speaking; in fact, they are
really generic operators, associated with the RELATION type generator and hence
applicable to any specific relation type obtained by invoking that type generator.

» Second, aimost all of the operators we will be discussing are really just shorthand
anyway! We will have more to say on this important point in Section 7.10,

» Third, the operators are all read-only (i.e., they “read” but do not ﬁpdate their oper-
ands). Thus, they apply spmt@cally to values—relation values, of course—and hence,
harmiessly, to those relation. ‘values that happen to be the current values of relvars.

= Last, jt follows from the prcvmus ‘point that it makes sense to talk about, for example,
“the projection over attribute A of selvar R meaning the relation that resulis from
taking the projection over that ﬁttnbute A of the current value of that relvar R. Occa-
sionally, however, it is convenient to use expressions like “the projection over
attribute-A of relvar R” in a slightly different sense. For example. suppose we define a
view SC of the suppliers relvar S that consists of just the S# and CITY attributes of
that relvar. Then we might say, loosely but very conveniently, that relvar SC is “the
projection over S# and CITY of relvar S"—meaning, more precisely, that the value of
SC ar any given time is the projection over S# and CITY of the value of relvar S at
that time, In a sense, therefore, we can talk in terms of projections of relvars per se,
rather than just in terms of projections of current values of relvars. We hope this kind
of dual usage of thc terminology on our part does not cause any. confumon

The plan of the chaptcr is as follows. Following this introductary sectwn Section 7.2
revisits the question of relational closure and elaborates on it considerably. Sections 7.3
and 7.4 then discuss Codd’s original eight operators in detajl, and Section 7.5 gives exam-
ples of how those operators can be used to formulate queries. Next, Section 7.6 considers
the more general question of what the algebra is for. Section 7.7 discusses a aumber of
miscellaneous points. Then Section 7.8 describes some useful additions to Codd's original
algebra, including in particular the important EXTEND and SUMMARIZE operators.
Section 7.9 discusses operators for mapping between relations with relation-valued

_attributes and relations without such attributes. Finally, Section 7.10 offers a brief sum-
mary. Note: We defer discussion of the pertinent SQL facilities to Chapter 8, for reasons
to be explained in that chapter.

t

7.2 CLOSURE REVISITED

As we saw in Chapter 3, the fact that the output from any given relational operation is’
another relation is referred to as the relational elosure property. To recap briefly, closure

av AL 8 ey o mma — L R o e TR e . . c———————

176 Part Il | The Relational Model

means we can write nested relational expressions-—that is, relational expressions in which
the operands are themselves represented by relational expressions of arbitrary complexity.
(There is an obvious analogy between the ability to nest relational expressions in the rela-
tional algebra and the ability to nest arithmetic expressions in ordinary arithmetic; indeed,
the fact that relations are closed under the algebra is important for exactly the same kinds
of reasons that the fact that numbers are closed under ordinary arithmetic is important.)

Now, when we discussed closure in Chapter 3, there was one very significant point
we deliberately glossed over. Recall that every relation has two parts, a heading and a
body; loosely speaking, the heading is the attributes and the body is the tuples. The head-
ing for a base relation—where,.as you will recall from Chapter 3, a base relation is the
value of a base relvar—is obviously known to the system, because it is specified as part of
the relevant base relvar definition. But what about derived relations? For examp!e, con-
sider the expression

S JOIN P

(which represents the join of suppliers and parts over matching cities, CITY being the
only attribute common to the two relations). We know what the body of the result fooks
like—but what about the heading? Closure dictates that it must fiave a heading, and the
system needs to know what it is (in fact the user does t00. as we will see in 2 moment). In
other words, that result must—of course!—be of some well-defined relation type. If we
arc to take closure seriously, therefore, we need to define the relational operations in such
a way as to guarantee that every operation produces a result with a proper relation type: in
particular, with proper attribute names. {(We remark in passing that this is an aspect of the
algebra that has been much ovérlooked in the literature—and also, regrettably, in the SQL

language and hence in SQL products—with the notable exception of the treatment found

in references [7.2] and [7.10]. The algebra as presented in th:s chapter is very much influ-

enced by these two references.)

One reason we require every result relation to have proper attribute names is to al!ow

‘us to refer to those attributes in subsequent operations—in particular, in operations
invoked elsewhere within the overall nested expression. For example, we could not sensi-

bly even write an expression such as

{ S JOIN P } WHERE CITY = 'Atl}ans‘

if we did not know that the result of evaluating the expression S JOIN P had an attribute
called CITY. a

What we need, therefore, is a set of relation type inference rules built into the alge-
bra, such that if we know the type(s) of the input relation(s) for any given relational opera-
tion, we can infer the type of the output from that operation. Given such rules, it will
follow that an arbitrary relational expression, no matter how complex, will produce a
result that also has a well-defined type, and in particular a well-defined set of attribute
names.

As a preparatory step to achieving this goal, we introduce a new operator, RENAME,
whose purpose is (loosely) to rename attributes within a specified relation. More pre-
cisely, the RENAME operator takes a given relation and retums another that is identical to
the given one except that one of its attributes has a different name. (The given relation is

T TS - Cw i .) . .) T '-".:-'_"'_"-'. '?. o
U s it s A R R Bl i b oo it R SR BTN, 40 3 il BT A Pk IS5 i 7ot R R S R B _ A

7.3 THE ORIGINAL ALGEBRA: SYNTAX

Chapter 7 | Relational Algebra 177

specified by means of a relational expression, possibly involving other relational opera-
tions.) For example, we might write:

.3 RENAME CITY AS SCITY

This expression—please note that it is an expression. not a “command” or statement,
and hence that it can be nested inside other expressions—yields a relation with the same
heading and body as the relation that is the current value of relvar S, except that the city
attribute is named SCITY instead of CITY:

e

st SNAME STATUS SCITY
S§1 | Smith 20 | London
§2 | Jones 10 | Paris
53 | Blake 30 | Paris
84 | Clark 20 | London
S5 | Adams 30 | Athens

Important: Please note that tl'usRENAME expression has not changed the suppliers
relvar in the database! It is just an expression (exactly as, e.g., S JOIN SP is just an
expresslon) and like any other expression it simply denotes a certain value—a value thar,

in this particular case. happens to look very much like the current value of the suppliers
reivar,

Here is another example (a “multiple renanung" this time):
P RENAME { PNAME AS PN, WEIGHT AS WT)
This expression is shorthand for the following:

{ P RENAME PNAME AS PN) RENAME WEIGHRT AS WT

The result looks like this:
P% | PN COLOR | WT CITY N
Pl | Nut Red 12.0 London

P2 | Bolt Green | 17.0 | Paris
P} | Screw | Blue 17.0 | Osic

P4 | Screw | Red 14.0 | London
PS5 | Cam Blue 12.0 | Paris
P6 | Cog Red 19.0 | London

.. It is worth noting that the availability of RENAME means that the relational algebra,

unllke SQL. has no need for (and in fact does not support) dot-qualified attribute names
such as S.S#.

i Vs

In this section, we present a concrete sjmtnx. based on Tutorial D, for relational algebra
_expressions that use the original eight operators, plus RENAME. The syntax is included
here primarily for purposes of subsequenf‘_refcrencé. A few notes on semantics are also

.......

5 '_:!EG.“:'I_ Bt easinds sl s i

B

-,;A;"‘.‘

[===

18 Part Il | The Relational Model

included. Note: Most database texts use a “mathematical” or “Greek™ notation for the
relational operators: ¢ for restriction (“selection™), 7 for projection, N for intersection, P4
(“bow tie™) for join, and so on. As you can see, W& prefer to use keywords such as JOIN
and WHERE. Keywords make for lengthier expressions, but we think they also make for
more user-friendly ones. ‘ _
<relation exp>
::= RELATION { <tuple exp commalist> }

<relvar name>

<relation op inv>

<with exp>

<introduced name>
{ <relation exp>)

A <relation exp> is an expression that denotes a relation (i.e., a relation value). The
first format is a relation selector invocation (see Chapter 6); we do not spell out the syntax
of <tuple exp> in detail here, since examples shouid be sufficient to give the general idea.
The <relvar name> and (<relation exp>) formats are self-explanatory; the others are
explained in what follows. - e

-

<relation op inv>
1:= <project> | <nonproject>

A relational operator invocation, <relation op inv>, is either a <project> or a <non-
project>. Note: We distinguish these two cases in the syntax merely for operator prece-
dence reasons (it is convenient to assign a high precedence to projection).

<project>

1= <relation exp> LRI
{ { ALL BUYT] <attribute name commalist> }

The <relation exp> must not be a <nonproject>.

<ponproject> -
:i= <rename> | <union> | <intersect> | <minus> | <times>
| <where> | <join> | <divide>

<repame>
s:= <relation exp> RENAME { <repaming commalist>)

The <relation exp> must not be a <nonproject>. The individual <renaming>s are
executed in sequence as written (for the syntax of <renaming>, see the examples in the
previous section). The parentheses can be omitted if the commalist contains just one
<renaming>. ’ .o

<union> .
1i= <relation exp> UNION <relation exp>

The <relation exp>s must not be <nonproject>s, except that either or both can be
another <union>. - R

<intersect> :
' s:m <relation exp> INTERSECT <relation exp>

The <relation exp>s must not be <nonproject>s, except that either or both can be
another <intersect>. ‘ ‘ ‘

-1
PRI

Chapter 7 | Relational Algebra 179

<minus> .
s3m <relation exp> MINUS <relation exp>

The <relation exp>s must not be <nonproject>s.

-<times> _
11= <relation exp> TIMES <relation exp>

The <relation exp>s must not be <nonproject>s, except that either or both can be
another <times>.

<where>

.:m <relation exp> WHERE <bool exp> 7

The <relation exp> must not be a <nonproject>. The <bool exp> can inciude refer-
ences to attributes of the relation ‘denoted by the <relation exp>, with the obvious
semantics. : :

<join> : .
,:1= <relation exp> JOINﬁg;elation exp>

The <relation exp>s must not be <ronproject>s, except that either or both can be
another <join>. - o . R

" .-

<divide> . » i . A
1= <relation exp> DIVIDERY <relation exp> PER <per>

-

The <relation exp>s must not be <nonproject>s.

<per> . :
..« <relation exp> | (<relation exp>, <relation exp>)

The <relation exp>s must not be <nonproject>s. -

-

<with exp>
;1= WITH <pame intro commalist> : <exp>
The <with exp>s we are primarily concemned with in this book are relational expres-
sions specifically, which is why we are discussing them in this chapter, However, scalar
and tuple <with exp>s are supported too: in fact, a given <with exp> is a Erelation exp>.
a <tuple exp>, or a <scalar exp> according as the <exp> after-the colon is a <relation
exp>, a <tuple exp>, ora <scalar exp> in tum. In all cases, the individual <name intro>s
are executed in sequence as written, and the semantics of the <with exp> are defined to be
the same as those of a version of <exp> in which each occurrence of each introduced
name is replaced by a reference to 2 variable whose value is the result of evaluating the
corresponding expression. Note: WITH is not really an operator of the relational algebra
as such; it is really just a device to help with the formulation of what otherwise might be
rather complicated expressions (especially ones involving common subexpressions). Sev-
eral examples are given in Section 7.5. ‘
<pame intro>
g <exp> AS <introduced name>
_The <infroduced name> can be used within the containing <wirh exp> wherever the
<exp> (enclosed in parentheses if necessary) would be allowed. |

180 Part II | The Relational Model

74 THE ORIGINAL ALGEBRA: SEMANTICS

Union

In mathematics, the union of two sets is the set of all elements belonging to either or both
of the given sets. Since a relation is—or, rather, contains—a set (namely, a set of tuples), it
is obviously possible to construct the union of two such sets; the result will be a set con-
sisting of all tuples appearing in ‘either or both of the given relations. For example, the
union of the set of supplier tuples currently appearing in relvar S and the set of part tuples
currently appearing in relvar P is certainly a set.

However, although that result is a set. it is nor a relation; relations cannot contain a
mixture of different kinds of tuples, they must be “tuple-homogeneous.” And we do want
the result to be a relation, because we want to preserve the closure property. Therefore, the
union in the relational algebra is not the completely general mathematical union; rather, it
is a special kind of union, in which we require the two input relations to be of the same
type—meaning, for example, that they both contain supplier tuples, or both part tuples,
but not a mixture of the two. If the two relations are of the same type, then we can take
their union. and the result will also be a relation of the same type; in other words, the clo-
sure property will be preserved. Nore: Historically, much of the database literature (earlier
editions of this book included) used the term union compatibility to refer to the notion that
two relations must be of the same type. This term is not very apt, however, for a variety of
reasons, the most obvious of which is that the notion does not apply just to union,

Here. then. is a definition of the relational union operator: Given two relations g and &
of the same type, the uuion of those two relations, a UNION &, is a relation of the same
type, with body consisting of ail tuples ¢ such that ¢ appears in a or b or both. :

Example: Let relations A and B be as shown in Fig. 7.2 opposite (both are derived
from the current value of the suppliers relvar S; A is the suppliers in London, and B is the
suppliers who supply part P1, intuitively speaking). Then A UNION B (see part 1 of the
figure) is the suppliers who either are located in London or supply part P1, or both. Notice
that the result has three tupies, not four; relations never contain duplicate tuples, by defini-
tion (we say. loosely, that union “eliminates duplicates™). We remark in passing that the
only other operation of the original eight for which this question of duplicate elimination
arises is projection (see later in this section).

By the way, observe how the definition of union relies on the concept of tuple equal-
ity. Here is a different but equivalent definition that makes the point very clear (the revised
text is highlighted): Given two relations a and b of the same type, the union of those two
relations, @ UNION b, is a relation of the same type, with body consisting of all tuples ¢
such that ¢ is equal to (l.e., is a duplicate of) some tuple in a or b or both. Analogous
remarks apply directly to the intersect and difference operations, as you will soon see.

Intersect

Like union, and for essentially the same reason, the relational intersection operator
requires its operands to be of the same type. Given two relations a and b of the same type,

I WA T AR T RISATVRGSPY BB NS AL BT YT IN WP TLVE R) W I O W £ ST M TR AT VT LT ST TRy T T R T A ION LY

FTAYS TR AT ST A R TR R O AT I R
e~
P e e stk .

A B
st SNAME STATUS | CITY S% | SNAME STATUS | CITY
sl | Smith 20 | London Sl | Smith 20 | Londen
{] 84 | Clark 20 | Londcn s§2 | Jones | - 10 | Paris
l. Union 1 ; SNAME STATU;‘. CITY
{A UNION B) S1 | Smith 20 | London
S4 | Clark 20 | London
82 | Jones 10 | Paris
2. Intersection _ -1 ; SNAME STATUS | CITY
(A INTERSECT B) Sl | Smith 20 | London
3. Difference L 4. Difference
(A MINUS B) . " A {B MINUS A)
st SNAME STATUS | CITY .| st SNAME STATUS | CITY
§4 | Clark 20 | London 1 82 | Jones 10 | Paris

Chapter 7 | Relational Algebra 181

Fig.7.2 Union, intersection, and difference examples.

then, the intersection of those two relations, a INTERSECT &, is a relation of the same

type, with body consisting of all tuples ¢ such that ¢ appears in both a and &.
Example: Again, let A and B be as shown in Fig. 7.2. Then A INTERSECT B (see
part 2 of the figure) is the suppliers who are located in London and supply part P1.

Difference .

Like union and intersection, the relational difference operator also requires its operands to
be of the same type. Given two celations @ and b of the same type, then, the difference
between those two relations, a MINUS b (in that order), is a relation of the same type, with
body consisting of ail tuples ¢ such that ¢ appears in @ and not b.

Example: Let A and B again be as shown in Fig. 7.2. Then A MINUS B (see part 3 of
the figure) is the suppliers who are located in London and do not supply part P1, and B
MINUS A (see part 4 of the figure) is the suppliers who supply part P! and are not located
in London, Observe that MINUS has a directionality to it, just as subtraction does in ordi-
nary arithmetic (e.g., “S — 2" and “2 — 5" are not the same thing).

Product. . '

In mathematics, the Cartesian product (prodnct for short) of two sets is the set of ail
ordered pairs such that, in each pair, the first element comes from the first set and the sec-
ond element comes from the second set. Thus, the Cartesian product of two relations

-

s
i)
AR
1

RN

i

182 Part Il | The Relational Model

would be a set of ordered pairs of tuples, loosely speaking. But again we want to prcservel

the closure property; in other words, we want the result to contain tuples per se, not
ordered pairs of tuples. Therefore, the relational version of Cartesian product is an
extended form of the operation, in which each ordered pair of tuples is replaced by the sin-
gle tple that is the union of the two tuples in question (using “umon in its normal set
theory sense, not its special relational sease). That is, given the tuples*

{ Al al, A2 a2, ..., Am am }
and
| { Bl bl, B2 b2, ..., Bn bn }
the union of the two is the single tuple

{ Al al, A2 a2, ..., Am am, Bl bl, B2 b2, ..., Bn bn }

Note: We are assuming for simplicity here that the two tuples have no attribute names in
common. The paragraph immediately following elaborates on this point.

Another problem that occurs in connection with Cartesian product is that. of course,
we require the result relation to have a well-formed heading (i.e.. to be of a proper relation
type). Now, clearly the heading of the result consists of all of the attributes from both of
the two input headings. A problem will therefore arise if the two input headings have any
attribute names in common; if we were allowed to form the product, the result heading
would then have two attributes with the same name and so would not be well-formed. If
we need to construct the Cartesian product of two relations that do have any such common
attribute names, therefore, we must use the RENAME operator fu'st to rename attributes
appropriately.

We therefore define the (relanonnl) Cartesian product of two reiations a and b, a
TIMES b, where a and b have no common attribute names, to be a relation with a heading
that is the (set theory) union of the headings of @ and & and with a body consisting of the
set of all tuples ¢ such that ¢ is the (set theory) union of a tuple appearing in a and a tuple
appearing in b. Note that the cardinality of the result is the product of the cardinalities,
and the degree of the result is the sum of the degrees, of the input relations a and b.

Example: Let relations A and B be as shown in Fig. 7.3 opposite (A is all current sup-
plier numbers and B is all current part numbers, intuitively speaking). Then A TIMES
B—see the lower part of the figure—is all current supplier-number/part-number pairs

Restrict

Let relation a have attributes X and Y (and possibly others), and let 8 be an operator—typ-
ically “=", “#”, “>", “<”, and so on—such that the boolean expression X 8Y is well-
formed and, given particular values for X and ¥, evaluates to a truth value (TRUE or
FALSE). Then the O-restriction, or just restriction for short, of relation a on attributes X
and ¥ (in that order)—

a WHERE X 8 ¥

! Tutorial D would require the keyword TUPLE to appear in front of each of these expressions.

ol S i MR S R NI S A R

Chapter 7 | Relational Algebra 183

A | st B | P¥
51 Pl

52 P2

53 - : P3

sS4 - P4

S5 P5

Pé

Cartesian product (A TIMES B)

st | P4

e
s1 { Pl s2 {pL| {53(¢p1 s4 | P1 | |s5)Pl
s1 | P2 s2 | p2 s3 | p2 S4 | P2 S5 | P2
s1 | p3 s2 {p3| |53 |3 s¢e { P3| |ss]|p3
s1 | P4 s2 | P4 s3 | p¢ s¢ | P4 55 | P4
51 | PS5 s2ips| |s3tes s¢ | PS §s | ps-|
sl | P6 s2 | pé | '53 | pe 54 | P6 ss | p6

Fig.7.3 Cartesian product example -~

—is a relation with the sime heading as a and with body consisting of all tuples of a such
that the expression X 0 Y evaluates to TRUE for the tuple in quesuon. .

Note: The foregoing is essentially the definition of restriction given in most of the lit-
erature (including earlier editions of this book). However, it is possible to generalize it,
and we will, as follows. Let relation a have attributes X, Y, ..., Z (and possibly others), and
let p be a truth-valued function whose parameters are, preclscly. some subsetof X, Y, ... Z.
Then the restriction of a according to p— - S e

a WHERE p

—is a relation with the same heading as v and wnth body consnstmg of all tuples of a such
that p evaluates to TRUE for the uple in question,

The restriction operator effectively yields a “horizontal” subset of a given relation:
that is, that subset of the tuples of the given telation for which some specified condition is
satisfied. Some examples (all of them illustrating the generalized version of restriction as
just defined) are given in Fig. 7.4, overleaf, . '

Points arising: _

1. The expression p following the keyword WHERE is, of course, 2 boolean expression:
in fact, it is a predicate, in a sense to be discussed in detail in Chapter 9. '

2. We refer to that predicate as a restriction condition, If that condition is such that it
can be evaluated for a given tuple ¢ without examining any tuple other than r (and
hence a fortiori without examining any relation other than a), then it is a simple
restriction condition. All of the restriction conditions in Fig. 7.4 are simple in this

* sense. Here by coatrast is an example that involves a nonsimpie restriction condition:

’-_'.'_' T
2

184 Part IT | The Relational Model

OR P§ = PR ('PT')

e

$ WHERE CITY = 'London’ S# | SNAME | STATUS | cITY Z
s1 | smith 20 | London %

S¢ § Clark 20 | London 5

- %

P WHERE WEIGHT < P4 | pNaME | coLoR | wergHT | cITY i
WEIGHT (14.0) ' 3

Pl | Nut Red 12.0 | London £

PS5 | Cam Blue 12.0 | paris z

SP WHERE S = S# ('S6') . st | Pt | QTY i
i

Fig. 74 Restriction examples

S WHERE { (SP RENAME S} AS X) WHERE X =S¢) { P#) = P { P} }

We will examine this example in detail later in this section, foIlowmg the discussion of
divide. -

3. The following cquwalcnces are wotthy of note:
a WEERE pl OR p2 ' m (a WHERE pl } UNION (a WHERE p2)

Al Y aadn D et

PR TV

" a WHERE pl AND p2° w '{ a WHERE pl) INTERSECT { a WHERE p2)
A WHERE NOT (2) ® a MINUS (4 WHERE p) -

Prbject
Let relation @ have attributes X, ¥, ..., Z (and possibly others). Then the pro;ecuon of rela-
tionaon X, Y. .., Z—
a (X, ¥ eees 2). . - i
—is a relation with: ‘
® A heading derived from the heading of a by removing all attributes not mentioned in
theset { X, ¥, ..., Z)}
® A body consisting of all tuples { X, Yy, ..., Z2 } suchthata tupie appears it a with
X value x, ¥ value y, ..., and Z value z

The projection operator thus effectively yields a “vertical” subset of a given relation:
namely, that subset obtained by removing all attributes not mentioned in the specified
commalist of attribute names and then eliminating duplicate (sub)tuples from what is left.

Points arising: _

1. No attribute can be mentioned more than once in the attribute name commalist (why
not?),
2. In practice, it is often convenient 1o be able to specify, not the attributes over which

the projection is to be taken, but rather the ones that are to be “projected away” (i.e.,

s '.vﬁ%w%%mﬂmﬂa.&dﬁlmx:&A'L‘.Mrr-.. e .

i
i
l
li
\.’.}‘

[- . - = o " - a rea o -
. e ——————r s

W&W{Mﬂﬂmmﬁmmmmmsmﬂuwm AR NIRRT R T T 0 Y Jar b P Ve AL TSI I ™ AT 0 1] TRST A R T [RN, RS T M iy S § T SRR TS T SR e ¥
ML b ? h 7 . ‘ : ; o
o . .

B L FE

Chapter 7 | Relational Algebra 185

removed). Instead of saying “project relation P over the P#, PNAME, COLOR, and
CITY atiributes,” for example, we might say “project the WEIGHT attribute away
from relation P,” as here: . ‘

P { ALL BUT WEIGHT }

Further examples are given in Fig. 7.5. Notice in the first one (the projection of sup-
pliers over CITY) that, although relvar S currently contains five tupies, there are only
three tupies in the result (“duplicates are eliminated”). Analogous remarks apply to the
other examples also, of course. Note too the reliance on tuple equality once again.

§ { CITY } cITY

London
Paris
Athens

P { COLOR, CITY } *"I"coLorR | cITY

Red London
.Green | Paris
- | Blue Oslo
Blue | Paris

(S WHERE CITY =~ ‘*Paris’) { St } st

52
83

Fig.7.5 Projection examples

Join.

Join comes in several different varieties. Easily the most important:however, is the so-
called natural join—so much so, in fact, that the unqualified term join is almost always
taken to mean the natural join specifically, and we adopt that usage in this book. Here then
is the definition (it is a little abstract, but you should already be familiar with natural join
at an intuitive level from our discussions in Chapter 3) Let relations @ and & have
attributes '

X1, X2, eue, Xm, Y1, ¥2, ..., ¥n
and '

Y1, Y2, ..., ¥n, 21, 22, ..., Zp

respectively; that is, the Y attributes Y1, Y2, ..., Y7 (only) are common to the two relations,
the X attributes X1, X2, ..., Xm are the other attributes of g, and the Z attributes Z1, Z2, ...,
Zp are the other attributes of b. Observe that:

186 Part II | The Relational Model

a We can and do assume without loss of generality, thanks to the availability of the
attribute RENAME operator, that no attribute Xi (i = 1, 2, ..., m) has the same name as
any attribute Zj (j = 1, 2, ..., p).

a Every auribute Yk (k = 1, 2, ..., n) has the same type in both @ and & (for otherwise it

- would not be a common attribute, by definition).

Now counsider { XI, X2, ... Xm }, { Y], Y2, .., Yn }, and { ZI1, Z2, ..., Zp | as three
composite attributes X, ¥, and Z, respectively. Then the (natural) join of a and b—

a JOIN b

—is a relation with hcading [X. Y. Z} and body consisting of all tuples { Xx. Yy, Zz }
such that a tuple appears in @ with X value xr and Y value y and a tuple appcars inbwith Y
value y and Z value z.

An example of a natural join (the natural jOl'ﬂ S JOIN P, over the common attribute
CITY) is given in Fig. 7.6.

Note: We have illustrated the point several times—indeed, it is illustrated by Fig.
7.6—but it is still worth stating explicitly that joins are nor always between a foreign key
and a matching primary (or candidate) key, even though such joins are a very common
and important special case.

Incidentally, note how the definition of natural join relies on tuple equality yet again.
Note too with respect to that definition that: ‘

n Ifn=0 (meamng a and b have no common attributes), then @ JOIN & degenerates to
a TIMES &.2 .

u If m = p = 0 (meaning a and b are of the same type), then 2 JOIN & degeneratcs toa
INTERSECT &.

Now we turn to the 8-join operation. This operation is intended for those occasions
(comparatively rare, but by no means unknown) where we need to join two relations on
the basis of some comparison operator other than equality. Let relations a and & satisfy the

B S A 2y AN 83 b ks SERTOR DL it A1 o I £ R -2 r-Mrinbcsrn s e d g At S Dt s R

S SNAME STATUS | CITY P#¥ PNAME COLOR | WEIGHT
Sl | smith 20 { London | P1 | Nut Red 12.0
Sl | Smith 20 | London | P4 | Screw | Red 14.0
S1 | Smith 20 | London | P6 | Cog Red 19.0
§2 | Jones 10 | Paris P2 | Bolt Green 17.0
S2 | Jones 10 | Paris PS5 | Cam Blue 12.0
S3 | Blake 30 | paris P2 | Bolt Green 17.0
é §3 | Blake 30 | paris | P5 | cam Blue 12.0
sS4 Clark 20 | London | Pl | Nut Red 12.0 ;
S4 | Clark 20 | London | P4 | Screw | Red 14.0
84 | Clark 20 | London | P§ | Cog Red 19.0

Fig.7.6 The natural join SJOINP -

% The version of Tutorial D defined in reference {3.3] includes no direct suppor for the TIMES operator
for this very reason.

L .

T

Chapter 7 | Relational Algebra 187

requirements for Cartesian product (i.c., they have no attribute names in common); let @
have an attribute X and let b have an attribute ¥; and let X, ¥, and @ satisfy the requirements
for 8-restriction. Then the 8-join of relation a on attribute X with relation & on attribute ¥
is-defined to be the result of evaluating the expression:

(aTIMES-b)WHEERBXBY

In other words, it is a relation with the same heading as the Cartesian product of « and b,
and with a body consisting of the set of all tuples ¢ such that r appears in that Cartesian
product and the expression X 8Y evaluates to TRUE for that tuple ¢. :

By way of example, suppose we wish to compute the greater-than join of relation S
on CITY with relation P on CITY (so Ghere is “>"; since the CITY attributes are defined

‘to be of type CHAR, “>" simply.mea’ns “greater in alphabetic ordering™). An appropriate

relational expression is as follows;

{ (S RENAME CITY AS SCITY 'J:/TIMES
(P RENAME CITY AS PCITY))"

WHERE SCITY > PCITY

Note the atribute renaming in this_example. (Of course, it would be sufficient to
rename just one of the two CITY atribites: the only reason for renanung both is symme-
try.) The result of the overall expression is shown in Fig. 7.7. :

If 9is “="; the G-join is called an equijoin. It follows from the definition that the
result of an equijoin must include two attributes with the property that the values of those
two attributes are equal in every tuple in.the relation. If one of those two attributes is pro-
jected away and the other renamed appropriately (if necessary), the result is the natural
join! For example, the expression representing the natural join of suppliers and pars (over

cities)— .

§ JoIN P o :

—is equivalent to the following more cumplex expression:
" ((S TIMES (P RENAME CITY AS PCITY }) :
WHERE CITY = PCITY)
{ ALL BUT PCITY }
Note: Tutorial D does not include direct support for the &-join operator because (a) it
is not needed very often in practice and in any case (b) it is not 2 pnmmve operator (i.e., it
can be defined in terms of other operators, as we have seen).

[

| S# | SNAME STATUS | SCITY Pé PNAME COLOR { WEIGHT | PCITY

§2 | Jones 10 | Paris | P1 | Nut Red 12.0 | London
82 | Jones 10 | Paris | PY | Screw | Blua 17.0 | Oslc

, §2 { Jones 10 { Paris | P4 | Screw | Red 14.0 | London
§2 | Jones 10 | raris | P6 | Cog Red 19.0 | London
$3 | Blake 30 | Paris | P1 | Nut Red 12.0 | Lopndon
§3 | Blake 30 | Paris | Pl | Screw | Blue 17.0 | Oslo
§3 | Blake 30 | Paris | P4 | Screw | Red 14.0 | London
S3 | Blake 30 | Paris | P6 | Cog Red 19.0 | London

Fig. 7.7 Greater-than join of suppliers and parts on cities

1
k R b 4 e 1 e mmw i - v el e M L e W 3 Fmur - e m———— A - — 5 e ———
1

188 Part Il [The Relational Model

Divide

Reference {7.4] defines two distinct “divide” operators that it calls the Small Divide and
the Great Divide, respectively. In Tutorial D, a <divide> in which the <per> consists of
just one <relation exp> is a Small Divide, a <divide> in which it consists of a parenthe-
sized commalist of two <relation exp>s is a Great Divide. The description that follows
applies to the Small Divide only, and only to a particular Limited form of the Small Divide
at that; see reference {7.4] for a. discussion of the Great Divide and for further details
regarding the Small Divide as well,

We should say too that the version of the Small Divide as discussed here is not the
same as Codd’s original operator; in fact. it is an improved version that overcomes certain
difficulties that arose with that original operator in connection with empty relations. It is
also not the same as the version discussed in the first few editions of this book.

Here then is the definition. Let relations @ and & have attributes

X1, X2, ..., Xm
and

"1, 1'2, ceny Yn

rtspecnvelv. where no attribute Xi (i=1,2,..m)hes the same name as any attribute)j
{j= 1. 2, n), and let relation ¢ have attributes

Xi, Xz, . s Xm, ¥l, ¥2, ..., ¥n

(i.e.. ¢ has a.heading that is the union of the headmgs of a and b5). Let us now regard { X1
2, ... Xm } and { Y1, Y2. ..., ¥n } as composite attributes X and ¥, respectively. Then the
divisionof aby b perc (whem a is the dividend, b is the divisor. and ¢ is the “mediator”)—

- a DIVIDEBY b PER ¢

—is a relation with heading { X } and body consisting of all tuples { X x } appearing in a
such that a tuple { X x, Y y } appears in ¢ for ail tuples { Y v } appearing in b, In other
words. the result consists of those X values from a whose corrssponding Y values in ¢
include all Y vulues from b, loosely speaking. Note the reliance on tuple equality yet
again!

Fig. 7.8 shows some examples of division. The dividend (DEND) in each case is the
projection of the current value of relvar S over S#; the mediator (MED) in each case is
the projection of the current value of relvar SP over S# and P#; and the three divisors
(DOR) are as indicated in the figure. Notice the last example in particular, in which the
divisor is a relation containing part numbers for all currently known parts: the result
(obviously enough) shows supplier numbers for suppliers who supply all of those parts.
As this example suggests, the DIVIDEBY operator is intended for queries of this general
nature; in fact, whenever the natural language version of the query conrtains the word

“all” in the conditional part (“Get suppliers who supply all parts"), there is a strong like- -

lihood that division will be involved. (Indeed. division was specifically intended by Codd
to be an algebraic couvuterpart to the universal quuntifier much as projcciion was
intended to be an algebraic connterpart to the existenrial quantifier. See Chapter 8 for fur-
ther explanation.)

- .‘__;m..,..u_h ﬂ'ﬂj

Skl .

LI RX LU W T SR

ARSI

T

!

£ ST S S LA I 2 e A S D 2 e

RIATHE SEM RS iR L Rl m e Py

Tt it

e

"
o
75\""‘

oy

o
ERIer]

a
v

i

Chapter 7 | Relational Algebra

DEND | S# MED | s§ | P#
S1 s1 | Pl
s2 81 | p2
. S3 . s1 { 3
S4 s1 | P4
s5 st | ®s
s1 | Ps
DOR | P# por [p# DOR | Pt
—_—
Pl P2 Pl
P4 P2
P3
_ P4
z PS
P6.
DEND-DIVIDEBY DOR PER MED
st - 4 S# s
s1 T s1' s1
82 sS4 _

Fig. 7.8 Division examples

In connection with that last example. however, we should point out that queries of
that general nature are often more readily expressed in terms of relational comparisons.
For example:

S WHERE ((SP RENAME S AS X) WHERE X = S#) (P# } = P { P# }

. This expression evaluates to 2 relation containing all and only the supplier tuples for sup-

pliers who supply all currently known parts. Explanation:

1. Fora given supplier, the expression
((SP RENAME S# AS X) WHERE X = S#) { P }
yields the set of part numbers for parts supplied by that supplier.

2. That set of part numbers is then compared with the set of all currently known part
-~ numbers. :

3. If and only if the two sets."arc equal, the corresponding supplicr tuple appears in the
result. '

* Here by contrast is the DIVIDEBY version, now spelled out in detail:

S JOIN { S { S# } DIVIDEBY P { P#)} PER SP { S¥, P¢ })

" You might well feel that the relational comparison version is'conceptually easier to deal

with. In fact. there is some doubt 2s to whether DIVIDEBY would ever have been defined
if the relational model had included relational comparisons in the first place—but it did not.

-

ol

——y el — e o— . ——ea—

190 Part IT | The Relational Model

7.5 EXAMPLES

In this section we present a few examples of the use of relational algebra expressions in
formulating queries. We recommend that you check these cxamplcs against the sample
data of Fig. 3.8 (see the inside back cover).

7.5.1 Get supplier names for suppliers who supply part P2:
{ ({ SP JOIN S) WHERE P# = B¥ ('P2'))} { SNAME }

Explanation: First the join of relations SP and S over supplier numbers is constructed,
which has the effect; conceptually, of extending each SP wple with the coxrespondmg
supplier information (i.e., the appropriate SNAME, STATUS, and CITY values). That join
is then restricted to just those tuples for part P2, Finally, that restriction is projected over
SNAME. The final result has just one attribute, called SNAME.

7.5.2 Get supplier names for suppliers who supply at least oue red part:

{ ({ P WHERE COLOR = COLOR ('Red'))
JOIN SP) { S% } JOIN §) { SNAME }
The sole attribute of the result is SNAME again.
Here by the way is a different formulation of the same query:
{ ({ P WHERE COLOR = COLOR ('Red’)) { P# }
JOIN SP } JOIN S) { SNAME } .
This example thus illustrates the important point that there will often be several different
ways of formulating any given query. See Chapter 18 for a discussion 6f some of the impli-
cations of this point. :

7.5.3 Get supplier names for suppliers who supply all parts: o
({ S (St} DIVIDEBY P { P} } PER SP { S#, Pf }) '
JOIN §) { sumu: }
Or:
{ § WHERE
({ SP RENAME S% AS X) WHERE X = S) { B# } =P { P# })
{ SNAME }

Once again the result has a sole attzibute called SNAME.

7.5.4 Get supplier numbers for suppliers who supply at least all thoge parts supplied
by supplier S2:

S { S# } DIVIDEBY (SP WHERE Sk = S¥ ('S2°')) { P4 }
: PER SP { Sk, P})

The result has a sole attribute called S#,

7.5.5 Get all pairs of supplier numbers such that the sﬁppl_lers coucerned are *colo-
. cated” (i.e., located in the same city):

a?
e,

Chapter 7 | Relational Algebra 191

({ (S RENAME s# AS SA) { SA, CITY)} JOIN
{ S RENAME S§ AS SB) { SB, CITY })
WHERE SA < SB) { SA, SB }

The result here has two attributes, called SA and SB (actually it would be sufficient to
rename just one of the two S# attributes; we have renamed both for symmetry). We have
assurned that the operator “<" has been defined for type S#. The purpose of the restriction
condition SA < SB is twofold

» [t eliminates pairs of supplier numbers of the form).

= It guarantees that the pairs (x,y) and (y.x) will not both appear.

We show another formulation of this query to show how WITH can be used to sim-

‘plify the business of writing what otherwise might be rather cocrmplicated expressions:?

WITH { S RENAME Si AS SA)"{ SA, CITY } AS T1,
(S RENAME S} AS SB (, §B, CITY } AS T2,
T1 JOIN T2 AS T3, it
T3 WHERE SA < SB AS Td ¢
T4 { SA, SB } -
WITH allows us to think about large, complicated expressions in a kind of step-at-a-
time fashion. and yet it does not in any way violate the nonprocedurality of the relational

algebra, We will expand on this point in the dxscusslon followmg the next cxample

7.5.6 Get supplier uames for supphers who do not supply part P2:
{ (S {S§) MINUS { SP NHERE P§ = P# (*P2*))} {-S# 7}).
S : Lo _‘Jomsy{smmz;
The result has a sole attribute called SNAME. = T et e
As promised. we elaborate on this example in order to illustrate another point. It is
not always easy to see immediately how to formulate a given query as a single nested
expression. Nor should it be necessacy to do so. enhcr Hcrc IS a step at-a—ume formula-

~ tion of the example:

. E I

WITH § { s# } AS T1, . . '

SP WHERE pf = P’ ('Pz } &S '1'2, -

T2 { S§ } AS T3, L .

Tl MINUS T3 AS T4,

T4 JOIN S AS TS5,

TS { SNAME } AS 76 :

Té

“T6 denotes the desired result. Explanation: Names iatroduced by a WITH clause—that is,

names of the form Ti, in the example~—are assumed to be local to the statement containing
that clause. Now, if the system supports “Jazy evaluation” (as, for example, the PRTV sys-

- tem did [7.91), then breaking the overall query down into a sequence of steps in this fashion

need have no uadesirable performance implications. Instead, the query can be processed as

follows: -

'3 In fact, we used the scalar form of WITH in the definition of operator DIST in Chapter 5, Section 5.5;
we also showed the relational form in the expansion of the UPDATE shorthand in Chapter 6, Section 6.5.

192 Part Il { The Relntional Model

® The expressions preceding the colon require no immediate evaluation by the sys-
tern—all the system has to do is remember them, along with the names introduced by
the corresponding AS clauses.

m The expression following the colon denotes the final result of the query (in the exam-
ple, that expressioa is just “T6"). When it reaches this poiat. the system cannot delay
evaluation any longer but instead must somehow compute the desired value (i.e., the

" value of T6). . ,

® In order to evaluate T6, which is the projection of TS over SNAME, the system must
first evaluate T5; in order to evaluate TS, which is the join of T4 and S, the system
tnust first evaluate T4; and so oa.'In other words, the system effectively has to evalu-
ate the original nested expression, exactly as if the user had written that nested
expression in the first place,

See the aext sectioa for a brief discussion of the general question of evaluating such
nested expressions, and Chapter 18 for an extended treatment of the same topic.

7.6 WHAT IS THE ALGEBRA FOR?

| e ety ettt o e —+ 8 < = < b

To summarize this chapter so far; We have defined a relarional algebm.‘ that is, a collec-

tion of operations on relations. The operations in question are union, intersect, difference,

product, restrict, project. join, and divide. plus an attribute renaming operator, RENAME
(this is essentially the set that Codd originally defined in reference [7.1], except for
RENAME). We have also presented a syntax for those operations, and used that syntax as
a basis for a number of examples and illustrations.

As our discussions have implied. however. Codd’s eight operators do not constitute a
minimal set (nor'were they ever meant to), because some of them are not primitive—they
can be defined in terms of the others. For example. the operators join. intersect, and divide
can be delined in terms of the other five (see Exercise 7.6). and they could theréfore be
dropped without any loss of functionality. OF the remaining five. however, none can be
defined in terms of the other four. so we can regard those five as constituting a primitive
or minimal set (not necessarily the only one, please note). In practice, however, the other
operators (especially join) are so useful that a good case can be made for supporting them
directly.)

We are now in a positioa to clarify an important poiat. Although we never said as
much explicitly, the body of the chapter thus far has certainly suggested that the primary
purpose of the algebra is merely data retrieval. Such is not the case, however. The funda-

% This sentence requires a certain amount of qualification. First, since we have seea that product is a spe-
cial case of join. we could replace product by join in the stated set of primitives, Second, we really need
to include RENAME, because our aigebra (ualike that of reference {7.1]) relies on attribute naming
instead of ordinal position. Third, reference [3.3] describes a kind of “reduced instruction set” version of
the algebra, cailed A, that allows the entire functionality of Codd’s criginal algebra (as well as RENAME
and several other useful operators) to be achieved with just two primitives, caiied remove and nor.

oy
Ly
.
-
b
5
. ir'
by .- 4
e
*

%=
b
e
'+']
£
il
% ,
XL

....
x

{)
B

s s

ey

o]

i ain

&4

't ‘..'- O . . .
1ttt bhard Prens b bt vt - .

| T
P adei i e
TLL LI 9

LT

RIEGE R PSSt o8y BT

-t f popfia

Chapter 7 [Rcelational Algebra 193

mental iatent of the algebra is to allow the writing of relational expressions. Those
expressions in turn are intended to serve a variety of purposes, including retrieval but not
limited to retrieval alone. The following list—which is not meant to be exhaustive—indi-

~ cates some possible applications for such expressions:

® Defining a scope for retrieval—that is, defining the data to be fetched in some
retrieval operation (as already discussed at length)

= Defining a scope for update—that is, defining the data to be inserted, changed, or
deleted in some update operation (see Chapter 6)

» Defining integrity constraints—that is, defining some constraint that the database
must satisfy (see Chapter 9)

® Defining derived relvars—that is, defining the data to be included in a view or snap-
shot (see Chapter 10)

& Defining stability reqmrements—that is, defining the data that is to be the scope of .

some concurrency control operatwn (sec Chapter 16)

= Delining security constraints—that is, defining the data over which authorization of
some kind is to be vrnnted (sce Chaptcr 17)

In general. in fact, thc expressnons serve as a high-level, symbolic representation of
the user's intent (with regard to some particular query, for example). And precisely
because they are high-level and symbolic, they can be subjected to a variety of high-level,
symbolic transformation rules, For example, the expression

((SP JOIN S) WHERE P# = Bf ('P2')) { SNAME)}

(*Get supplier names for suppliers who supply part P2"—Example 7.5.1) can be trans-
formed into the logically equivalent but probably more efficient expression

({ SP WHERE PE = é; (*P2')) JOIN §) { SNAME }

(Exercise: In what sense is the second expression probably more efﬁuent’ Why only
*probably”?) : LA

The algebra thus serves as a convenient basis for optimization (refer back to Chapter
3, Section 3.5, if you need to refresh your memory regarding this notion). Thus, even if
the user states the query in the first of the two forms just shown, the optimizer should con-
vert it into the second form before executing it (ideally, the performance of a given query
should not depend oa the particular form in which the user happens to state it). See Chap-
ter 18 for further discussion.

We conclude this section by noting that, precisely because of its fundamental nature,
the algebra is often used as a kind of yardstick against which the expressive power of
some given language can be measured. Basically, a language is said to be relationally
complete [7.1] if it is at least as powerful as the algebra—that is, if its expressions permit
the definition of every relation that can be defined by means of expressions of the algebra
(the original algebra, that is. as described in previous sections). We will examine this

notion of relational completeness in more detail in the next chapter.

| WS

2,

e b v i e

i am e am ol

194

7.7

Part IT | The Relational Model

FURTHER POINTS

This section covers a few miscellaneous issues related to the original eight operators.

Associativity and Commutativity

It is easy 1o verify that UNION is associative—that is, if a, 4, and ¢ are arbitrary relations

of the same type, then the expressions
(a UNION b) UNION ¢

and .
a UNION (b ONION c)

are logically equivaient. For convenience, therefore, we ailow a scquencé of UNIONS to be
written without any parentheses; as a consequence, each of the foregoing expressions can
be unambiguousily abbrewated to just :

a UNION b UNION ¢

Analogous remarks apply to INTERSECT, TIMES, and. JOIN (but not MINUS). Nore:
For such reasons among others, some kind of prefix notation, as in, for example. UNION
(a.b.c), might be preferable in practice to the infix style used in ’Ihtorlal D. But we stay
with that infix style in this book.

UNION, INTERSECT, TIMES, and JOIN (but not MINUS) are also commutative-—- :

that is, the expressions. X

a UNION b
and : . :

b UNION a
are also logically equivalent, and similarly for INTERSECT, TIMES, and JOIN,

We will revisit the whole question of associativity and commutativity in Chapter 18.
Regarding TIMES, incidentaily, we note that the set theory version of Cartesian product is
neither associative nor commutative, but (as we have just seen) the relational version is
both.

Some Equivalences

In this subsection we simply list a few important equivalences, with little by way of fur-
ther comment. In what follows, r denotes an arbltrary rclanon. and empry denotes the
empty relation of the same type as ».

B r WHERE TRUE = r (anidentiry restriction) -

% r WHERE FALSE a empty '

®r{(Xx, ¥ ..., 2} = rifX Y .. Zare all of the attnbutes ofr(an identity
progec_:uon)

it o

Chapter 7 | Relational Algebra 195

®m r { } = TABLE_DUMIifr=empty, TABLE DEE otherwise (a nullary projection)
"rJOINr = rUNIONTr = rINTERSECT r = r
r JOIN TABLE DEE m= TABLE DEE JOIN r = r
(i.e., DEE is the identity with respect lo join, just as zero is the ideatity with respect to
addition, or one is the identity with respect to multiplication, in ordinary arithmetic)

Il

® r TIMES TABLE DEE = TABLE DEE TIMES r = r
(this equivalence is just a special case of the previous one)

r UNION empty = r MINUS empty = 7 -
empty INTERSECT r =& empty MINUS r = empty '

I3
ok
pod
ot
S
b
v
s
-
b

Some Generalizations o

JOIN, UNION, and INTERSECT. avere all deﬁued originally as dvadic operators (i.e.,,
ench took exactly two relations -as’ operands) as we have seen, however, they can be
unamblguously generalized to become n-adic operators for arbitrary n > 1. But what about
= 17 Or n = 07 It tums out to be desirable, at least from a conceptual point of view, to be
able to perform “joins,” “unions,” and “imersccuons" of (a) just a single relation and (b)
‘ no relations at all (even though Tutorial D provndes no direct syntactic support for any
such operations). Here are the definjtions. Let s be a set of relations (all of the same rela-
tion type R7 in the case of union and intersection). Then: .

= If s contains just one relation # then the join, umon. and mtersecuon of all relations in
5 are all defined to be simply ~ -
= If s contains no relations at zil, then:
» The join of all relations in s is defined to be TABLE DEE (the xdenmy with respect
to join).
= The union of all relations in s is deﬁned 10 be the empty relanon of type RT.
s The intersection of all relations in 5 is defined to be the “universal” relation of type

RT—that is. that unique relation of type RT that comams all possible mples with
heading H, where H is the heading of telauon type RTS

78 ADDITIONAL OPERATORS

Numerous writers have proposed new algebraic operators since Codd defined his original
eight. In this section we examine a few such operators—SEMIJOIN, SEMIMINUS,
EXTEND, SUMMARIZE, and TCLOSE-—in some detail. In terms of our Tuterial D i
syntax, these operators involve five new forms of <nonproject>, with specifics as follows:

5 MINUS is dyadic, too. By contrast, restrict and project are monadic operators.

6 We note in passing that the term universal relation is usually used in the literature with & very different
meaning. See, for example, reference {13.20].

. . - '
| .
.

- e mw ot bl e B st s b g " 4 = oy @ eyl

126 Part Il [The Relational Model

<semijoin>
11= <relation exp> SEMIJOIN <relation axp>

<semiminus>
1:= <ralation exp> SEMIMINUS <re1ation exp>

<extend>
::= EXTEND <relation exp> ADD (<extend add commalist>)

The parentheses can be omitted if the commalist contains just one <extend add>.

<extesnd add> .
zi= <exp> AS <attribute name>

<summarize>
t1:= SUMMARIZE <relation exp> PER <relation exp>
ADD (<summarize add commalist>)

The parentheses can be omitted if the commalist contains just one <summarize add>.

<summarize add>
t:= <summary type> [(<scalar exp>) |
AS <attributa name>

<summary type>
:s= COUNT "] suM | Ave MAX | MIN | ALL | ANY
| countd | suMp | avep : _

<tclose>
. 3= TCLOSE <ralntian exp>

The various <re[auon ¢xp>s menuoncd in the forcgomg BNF production rules must
aot be <nanprvject>s.

Serm;om
Let g, b. X. and Y be as defined in the subsection “Join” in Section 7.4, Then the semijom

of a with b (in that order), a SEMIJOIN b, is defined to be equwnlent to: -
(aJOINb){x,l’} ' '

[n other words, the semijoin of a with b is the join of a and b, projected over the attributes
of a. The body of the result is thus, loosely, the tuples of a that have a counterpart in b.
Example: Get S#. SNAME, STATUS, and CITY for suppliers who supply part P2:

S SEMIJOIN (SP WHERE P# = P} ('P2'})

We note in passing that many real-world queries that call for the use of join are really
semijoin queries in disguise—implying that direct support for SEMIJOIN might be desir-
able in practice. An analogous remark applies to SEMIMINUS (see the next subsection).

Semidifference

The semidifference between a and b (in that order), a SEMIMINUS 5, is defined to be
equivalent to:

a MINUS { a SEMIJOIN b)}

o TGyt Lt .
T AYeY A

by

MU, TR e

e

- P2

Chapter 7 | Relational Algebra 197

The body of the result is thus, loosely, the tuples of a that have no counterpart in 5.
Example: Get S#, SNAME, STATUS, and CITY for suppliers who do not supply part

S SEMIMINUS (SP WHERE P} = P} ('}’2'))

Extend | o

You might have noticed that the algebra as we have described it so far has no computa-
tional capabilities, as that term is conventionaily understood. In practice, however, such
capabilities are obviously desirabie. For example, we would like to be able to retrieve the
value of an arithmetic expression such as WEIGHT » 454, or to refer to such a value in a
WHERE clause (we are assuming here—the discussion of units in Saction 5.4 notwith-

standing—that part weights are given.in pounds and 1 pound = 454 grams’). The purpose -

of the extend operation is to support such capabilities. More precisely, EXTEND takes a
relation and returns another that is idcnucal to the given one except that it includes an
additional attribute, values of which aré obtamcd by evaluating some specified computa-
tional expression. For example, we might write:

EXTEND P ADD (WEIGHT * 454 }-AS GMWT

This expression—please note that it is an expression, not a2 command or statement,
and hence can be nested inside other expressions—yields a relation with the same heading
as P, except that it includes an additional attribute called GMWT, Each tuple of that rela-
tion is the same as the corresponding tuple of P, except that it additionally includes a
GMWT value, computed in accordance with the specified arithmetic expression WEIGHT
* 454, See Fig. 7.9.

Important: Please note that this EXTEND expression has not chnnged the parts relvar

in the database; it is just an expression. and like any other expression it simply denotes a-

cerain value-—a value that, in this particular case, happens to look rather like the current
value of the parts relvar. (In other words, EXTEND is not a relational algebra analog of
SQL’s ALTER TABLE.. ADD COLUMN.)

P PNAME COLOR | WEIGHT | CITY GMWT
’ Pl | Nut Red 12.0 | London | 5448.0
P2 | Bolt Green 17.0 | Paris 7718.0
P3 | Screw | Blue 17.0 | oslo 7718.0
P4 | screw | Red 14.0 | London | 6356.0
1 P5 | cam Blue 12.0 Paris 5448.0
Pé | Cog Red 19.0 | London | B626.0

Fig. 7.9 Anexample of EXTEND

T We are also assuming that “s™ is a legal opemtioﬁ between weights and integers. What is the type of the
result of such an operation?

N 3
F
et &
MY 5
. =i
. . '
o

Feer
)

P fad]
b=t

TR e I MOl ey 3
- R P

198 Part Il | The Relational Model

Now we can use attribute GMWT in projections, restrictions, and so on. For cx;ﬁnplc:

((EXTEND P ADD { WEIGHT * 454) AS GMWT)
WHERE GMWT > WEIGHT (10000.0)) { ALL BUT GMWT }

Note: Of course, a more user-friendly language would allow the computatxoual expression
to appear directly in the WHERE clause, as here:

P WHERE (WEIGHT * 454) > WEIGHT (10000.0)

(see the discussion of restrict in Section 7.4). However, such a feature is reaily just syntac-
tic sugar,
In general, then, the value of the extension_

EXTEND a ADD exp AS 2
is a relation defined as follows:

® The heading of the result consists of the heading of a extended with the attribute Z

= The body of the result consists of all tuples ¢ such that ¢ is a tuplé of a extended with 2
value for attribute Z, computed by evaluating exp on that tuple of a.

Relation @ must not have an attribute called Z. and exp must not refer to Z, Observe that . 3
the fesult has cardinality equal to that of 2 and dcgrce equal to that of a plus one 'I'he type - 3%
of Z in that result is the type of exp, . §i

Here are some more examples: o

l. EXTEND s ADD *Supplier' AS TAG

This expression effectively tags each tuple of the current value of relvar S with the
character string “Supplier” (a literal—or, more vcncrally. a selector invocation—is a
legal computational expression, of course). :

2. EXTEND (P JOIN SP) ADD { WEIGHT * QTY) AS SHIPWT
This example illustrates the application of EXTEND to the result of a relanonal
expression that is more complicated than just a simple relvar name.

3. { EXTEND S ADD CITY AS SCITY) { ALL BUT CITY }
An attribute name such as CITY is also a legal computational expression. Observe that
this particular example is equivalent to: : -
S RENAME CITY AS SCITY o
In other words, RENAME is not primitive!-—it can be defined in terms of EXTEND
(and project). We would not want to discard our-useful RENAME operator, of course,
but it is at least interesting to note that it is really just shorthand.

4. EXTEND P ADD (WEIGHT * 454 AS GMWT, WEIGHT ¥ 16 AS OZWT)
This example illustrates a “mnltiple EXTEND.”

5. EXTEMND S
ADD COUNT ((SP RENAME S§ AS X) WHERE X = Si)
AS NP

The result of this expression is shown in Fig. 1.10. Explanation:

-

— o s . - P S -

TS OTARRG

P

Chapter 7 | Relational Algebra 199

Sk SNAME STATUS CITY NP
sl | Smith 20 | London 6
§2 | Jones | 10 | Paris 2
{ 83 | Blake 30| paris 1
s4 | Clark 20 | London 3
S5 | Adanms 30 | Athens 0

Fig.7.10 Another EXTEND example

a. For a given supplier, the expression.
((SP RENAME S§ AS X) WHERE X = St)

' yields the set of shipments for that supplier.

b. The aggregate operator COUNT is then applied to that set of shlpmcnts and
retums the corresponding cardmahty (a scalar value).

. Attribute NP in the result thus reprcserits the number of parts suppllcd by the supplier
identified by the corresponding Sit value. Nouce the NP value for supplier S5 in par-
ticular; the set of shipments for supplier.S3 i xs empty, and so the COUNT invocation
returns zero, 4 : e

We elaborate bneﬂy on this quesuon of aggregate operators. . The purpose of such an
operator, in general, is to derive a single scalar value from the values -appearing in some
specified attribute of some specified relation (usually a derived relation). Typical exam-
ples are COUNT, SUM, AVG, MAX, MIN, ALL, and ANY. In Tutorial D, an aggregate
operator invocation, <agg op inv>—which, since it returns a scalar value, is a special kmd
of <scalar exp>—takes the general form:

<agqg op name> (<relat;on exp> [, <attr1bute name> i) B

If the <agg op name> is COUNT the <attribute name> is irrelevant and must bc ormtted
otherwise, it can be omitted if and only if the <relation exp> denotes a relation of degree

' one, in which case the sole attribute of the result of that <relation exp> is assumed by

default, Here are a couple of examples:

SUM (SP WHERE SF = S ('S1'), QTY)
SUM ((SP WHERE Sk = Sk (*S1')) { QTY¥ })"

Note the difference between these two expressions—the first gives the total of all ship-
ment quantities for supplier Sl the second gives the total of all distinct shipment quanti-
ties for supplier S1.

If the argument to an aggregate opetator happens to be an empty set, COUNT (as we
have seen) retumns zero, and so does SUM; MAX and MIN return, respectively, the lowest
and the highest value of the applicable type; ALL and ANY return TRUE and FALSE,
respectively; and AVG raises an exception. .

200

Part Il | The Relational Model

Summarize

We should begin this subsection by saying that the version of SUMMARIZE discussed
here is not the same as that discussed in earlier editions of this book—in fact, it is an
improved version that overcomes certain dlﬁ‘iculucs that arose with the earlier version in
connection with empty relations.

As we have seen, the exrend operator provides a way of incorporating “horizontal™ or
“rple-wise” computations into the relational algebra. The summarize operator performs
the analogous function for "vemcal" or “attribute-wise” computations. For example, the
expression

SUMMARIZE SP PER P { P§#)} ADD SUM (QTY.) AS TOTQTY

evaluates to a relation with attributes P# and TOTQTY, in which there is one tuple for
each P# value in the projection of P over P#, containing that P# value and the correspond-
ing total quantity (see Fig. 7.11). In other words, relation SP is conceptually panitioned
into groups or sets of tuples (one such group for each part number in P), and then each
such group is used to generate one tuple in the overall result.

In general, thc value of the summarization

SUMMARIZE a PER b ADD summary AS
i5a rclauon defined as follows

® First, b must be of the same type as soms pro;ccnon of a (i.e., every attribute of b
" must be an attribute of a). Let the attributes of that projection (equivalently, of b) be

Al A2, ... An.

® The heading of the result consists of the headmg of b extended with the attnbutc Z

® The body of the result consists of all tuples ¢ such that ¢ is a tuple of b extended with a

* value for attribute Z. That Z value is computed by evaluating summary over all wples
of a that have the same values for attributes [Al, A2, ..., An } as tuple t does. (Of
course, if no tuples of a have the same value for { A/, A2 ., An } as tuple 7 does,
then sununary is evaluated over an empty set.)

Relation b must not have an attribute called Z. and summary must not refer to Z, Observe
that the result has cardinality equal to that of b and degree cquai to that of & plus one. The
type of Z in that result is the type of summary.

P# | TOTQTY
Pl 600
P2 1000
P3 400
P4 500
P5 500
F& 100

Fig.7.11 An exampie of SUMMARIZE

A
3
3

3.

ez

Chapter 7 [Relational Algebra 201

Here is another example:

SUMMARIZE (P JOIN SP) PER P (CITY } ADD COUNT AS NSP

The result looks like this:
CITY NSP
London 5
Osle 1 ‘
Paris &

In other words, the result contains one tuple for each of the three part cities (London,
Osla, and Paris), showing in each case the number of shipments of parts stored in that city.

Points arising:

Observe yet again that here we have an operator whose definition relies on the notion
of tuple equality.
Our syntax atlows “multiple SUMMARIZEs"—for example:
SUMMARIZE SP PER P { P# } ADD.(SUM (QTY) AS TOTQTY,
AVG { QTY) AS AVGQTY }
The general form of <summarizé> (to repeat) is as follows:

SUMMARIZE <relation exp> PER <re.lat:.mn exp>
© ADD { <summarize add commalist>)}

Each <summarize add> in turn takes the form:
<summary type> { <scala: exp> }] AS <attribute name>

Typical <summary fype>s are COUNT, SUM, AVG, MAX. MIN, ALL. ANY,
COUNTD. SUMD, and AVGD. The D" (“distinct”) in COUNTD, SUMD, and
AVGD means “eliminate redundant duplicate values before performing the summary.”
The <scalar exp> can include references to attributes of the relation denoted by the
<relation exp> immediately following the keyword SUMMARIZE. The <scalar
exp> and enclosing parcmheses can and must be omitted only if the <summary rype>
is COUNT. M

Incidentally, please note that a <summarize add> is. not the same thing as an ag-
gregate operator invocation. An <agg op inv> is a scalar expression and can appear
wherever a literal of the appropriate type can appear. A <swnmarize add>, by con-
trast, is merely a SUMMARIZE operand; it is not a scalar expression. it has no mean-
ing outside the context of SUMMARIZE, and in fact it cannot appear outside that con-

- text.

As'you might have already realized, SUMMARIZE is not a primitive operator—it
can be simulated by means of EXTEND. For example, the expression
SUMMARIZE SP PER S { SE } ADD COUNT AS NP

is defined to be shorthand for the following:

{ EXTEND 5 { S%)}
ADD (((SP RENAME S¥f AS X) WHERE X = S§) AS Y,
COUNT (¥)} AS NP))
{ 5%, NP)}

- Ml f e oL inh e e U BT rae bt e o e e cemm + a1t ot e P e

e bl A,

Part IT | The Relational Model

Or equivalently:

WITH (S { S# }) AS T1,
(SP RENAME S§ AS X) AS T2,
{ EXTEND T1 ADD (T2 WHERE X = Sf) AS Y } as T3,
{ EXTEND T3 ADD COUNT (¥) AS NP) AS T4

T4 { S, NP } -

By the way, attribute Y here is relation-valued. Refer to Section 6.4 if you need to
refresh your memory regarding such a possibility.

. Here is another exampie:

SUHMARIZ? § PER § { CITY } ADD AVG (STATUS) AS AVG_STATUS

Here the PER relation is not just “of the same type as™ some projection of the relation
to be summarized, it actually is such a projection. In such a case, we allow the follow-
ing shorthand:

SUMMARIZE S BY { CITY } ADD AVG (STATUS) AS AVG_STATUS

(We have. replaced PER <relation exp> by BY <attribute name commalist>. The
attributes named must all be attributes of the relation being summarized.) '

. Consider the following example:

SUMMARIZE SP PER SP ()} ADD SUM (QTY) AS GRANDTOTAL

In accordance with the previous point, we can alternatively write this expression thus:
SUMMARIZE SP BY { } ADD SUM (QTY) AS GRANDTOTAL

Either way, the grouping and summarization here are being done on the basis of a rela--

tion that has no attributes at all. Let sp be the current value of relvar SP, and assume for
the moment that relation sp does contain at least one tuple. Then all of thgse sp tuples
have the same value for no attributes at all (namely, the O-tuple); hence there is just
one group, and so just one tuple in the overall result (in other words, the aggregate
computation is performed precisely once for the entice relation sp). The expression
thus evaluates to a relation with one auribute and one tuple; the auribute is called
GRANDTOTAL, and the single scalar value in the single result tuple is the total of all
QTY values in the original relation sp. X

If on the other hand the original relation sp has no tuples at all, then there are no
groups, and hence no result tuples (i.c., the result relation is empty too). By contrast,
the following expression—
SUMMARIZE SP PER TABLE_DEE ADD SUM (QTY) AS GRANDTOTAL .
—will “work™ (i.e., it will return the correct result, zero) even if sp is cmpty More pre-
cisely, it will return a relation with one attribute, called GRANDTOTAL, and one

tuple, containing the value zero. We therefore suggest that it should be possible to
omit the PER clause entirely, as here:

SUMMARIZE SP ADD SUM ({ QTY) AS GRANDTOTAL _
Omitting the PER clause is defined to be equivalent to specifying PER TABLE_DEE.

(A B o e TR L R R R R i B e B et i Bl s B A

W

kAT

R P E TR

S el

Chapter 7 | Relational Algebra 203

Tclose

“Tclose” stands for transitive closure. We mention it here mainly for completeness;
detailed discussion is beyond the scope of this chapter. However, we do at least define the
operation, as follows. Let a be a binary relation with attributes X and Y both of the same
type T. Then the transitive closure of a, TCLOSE &, is a relation a* with heading the
same as that of @ and body a superset of that of a, defined as follows: The tuple

{ X x, Yy}

appears in a* if and only if it appears in a or there exists a sequence of values z/, 22, ..., 21,
all of type 7, such that the tuples

. X%, Y 21}, {le,rzz }.' seee { X Zn, Y ¥}

all appear in a. (In other words, if we thmk of relation a as representing a graph, then the
“(x,y)" tuple appcars in a* only if thergjs;a path in that graph from node x to node y. Nate
that the body of a* necessarily includes the body of aas asubset.) ~

For funher discussion of transgtwe cIosu_rc, see Chapter 24.

- \'__
e

~
!

79 GROUPING AND UNGROUPING

-

The fact that we can have relatmns with attnbutes whose values are rclatmns in tum leads
to the need for operators, here called group and ungroup, for mapping between relations
that contain such attributes and relations that do not. For example:

SP GROUP { P4, QTY } AS BQ
Given our usual sample data, thxs expn:ssmn ylelds the result shown in FIU 1.12. Note:
You will probably find it helpful to use that figure to check the explanations that follow,
since they are (regrettably, but unavoidably) a little abstract. .

We begin by observing that the onvmal expression R

SP GROUP { P#, QTY } as PQ

might be read as “group SP by S#." S# being the sole attribute of SP not mentioned in the
GROUP specification. The result is a relation defined as follows. First, the heading looks
{ S§ 5§, PQ RELATION { P# P4, QTY QTY } }

In other words, it consists of a relauon-valued attribute PQ (whcrc PQ values in turn have
attributes P# and QTY), together with all of the other attributes of SP (of course. “all of the
other attributes of SP” here just means attribute S#). Second, the body contains exactly one
tuple for each distinct S# value in SP (and no other tuples). Each tuple in that body consists
of the applicable S# value (s, say), together with a PQ value (pg, say) obtained as follows:

‘% Each SP wple is replaced by a tuple (%, say) in which the P# and QTY components
have been “wrapped” into a tuple-valued component (y, say).

204

Part Il | The Relational Model

L o R ~ — —

——r. t 8

st PQ

81 PE } QTY

Pl | 300
P2 | 200
P3 | 400
P4 | 200
P5 | 100
Fé | 100

52 P | OTY

Pl 300
P2 | 400

s3 Pt QTY
P2 | 200

54 Pf | QTY

P2) 200
P4 | 300
P5 | 400 |.

Fig.7.12 Grouping SPby S#

s The vy components of all sﬁch tuples x in which the S# value is equal to s are h
“grouged” into a relation. pq, and a result tuple with S# value equal to s and PQ value
equal to pq is thereby obtained.

The overall result is thus indeed as shown in Fig. 7.12. Note in particular that the result
includes no tuple for supplier S5 (because relvar SP does not currently do so either).
Observe that the result of R GROUP (Al, A2, ..., An } AS B has degree equal to
nR-n+1. where nR is the degree of R.
Now we turn to ungroup. Let SPQ be the relation shown in Fig. 7.12. Then the

eX pl'CSSlOI‘l
SPQ UNGROUP PQ

(perhaps unsurprisingly) gives us back our usual sample SP relation. To be more specific, it
yields a relation defined as follows. First, the headmg looks like this:

{ 5t S#, ré P$, QTY QTY)

In other words, the heading consists of attributes P# and QTY (derived from attribute PQ),
together with all of the other attributes of SPQ (i.e.. just attribute S#, in the example). Sec-
ond, the body contains exactly one tuple for each combination of a tuple in SPQ and a tuple

. inthe PQ value within that SPQ tuple (and no other tuples). Each tupie in that body consists

of the applicable S# value (s, say), together with P# and QTY values (p and g, say) obtained
as follows:

t
e il i

m——

Chapter 7 | Relational Algebra 205

® Each SPQ tuple is replaced by an “ungrouped” set of tuples, one such tuple (x, say)
for each tuple in the PQ value in that SPQ tuple.

w Each such tuple x contains an S# component (s, say) equal to the S# component from
the SPQ tuple in question and a tuple-valued component (y, say) equal to some tuple
from the PQ component from the SPQ tupie in question.

The y components of each such tuple x in which the S# value is equal to s are
“unwrapped” into separate P# and QTY components (p and g, say), and a result tuple
k. - with S# value equal to s, P# value equal to p, and QTY value equal to ¢ is thereby
obtained.

ot it SR S L) il SRR N B e -
o
]

The overall result is thus, as claimed, our usual sample SP relation.

Observe that the result of R UNGROUP B (where the relations that are values of the
relation-valued attribute B have heading { Al, A2, ..., An }) has degrec equal to nR+n~1,
where nR is the degree of R, i

As you can see, GROUP and UNGROUP togethcr provide what are more usually
referred to as relational “nest” and * \mncst capabilities. We prefer our group/ungraup ter-
: , minology, however, because the nest/innest terminology is strongly associated with the
concept of NF? relations [6.10], a concept we do not endorse.
‘: For completeness, we close this section with some remarks concerning reversibility
of the GROUP and UNGROUP operations (though we realize the remarks in question o
might not be fully comprehensible on a first reading). If we group some relation r in some
way, there is always an inverse ungrouping that will take us back to r again. However, if
we ungroup some relation 7 in some way, an inverse grouping to take us back to r again
might or might not exist. Here is an example (based on one given in reference [6.4]). Sup-
pose we start with relation TWO (see Fig. 7.13) and ungroup it to obtain THREE. If we
now group THREE by A (and.pame the resuiting relation-valued attribute RVX once
3 3 X again), we obtain not TWO but ONE. o
. 5 If we now ungroup ONE, we rewwrn to THREE, and we have already seen that

THREE can be grouped to give ONE: thus, the group and ungroup operations are indeed

inverses of each other for this particular pair of relations, Note that, in ONE, RVX is

Sl LY

¥ mwo [A | Rvx THREE | A | X ove [A]| mvx
E 1 1l 1| [x
N o 1i{b
e e
¥ ~ a 1le "
g o b b
E -‘“ 3
3 =
3 1 X
3

a 1
1 <

Fig.7.13 Ungrouping and (re)grouping are not necessarily reversible

206 Part II [The Relational Model

functionally dependent on A3 (necessarily so, since ONE is of cardinality one), In general,
in fact, we can say that if relation r has a relation-valued attribute RVX, then r is reversibly
ungroupable with respect to RVX if and only if the following are both true:

n No tuple of r has an empty relation as its RVX value,
® RVX is functionally dependent on the combination of all other attributes of r

710 SUMMARY

We have discussed the relational algebra. We began by reemphasizing the importance of
closure and nested relational expressions, and explained that if we are going to take clo-
sure seriously, then we need some relation type inference rules. Such considerations led
us to introduce the RENAME operator. '

The original algebra consisted of eight operators—the traditional set operators union,
intersect, difference, and product (all of them modified somewhat to take account of the
fact that their operands are very specifically relations, not arbitrary sets), and the special
relational operators restrict, project, join, and divide. (In the case of divide, however, we

_ remarked that queries involving divide can always be formulated in terms of relational
comparisons instead, and many people find such formulations intuitively easier to under-
stand.) To ‘that original set we added RENAME (as already mentioned), SEMIJOIN,
SEMIMINUS, EXTEND, and SUMMARIZE, and we also mentioned TCLOSE and
discussed GROUP and UNGROUP. EXTEND in particular is extremely important (in
some ways it is as important as join). _

Next, we pointed out that the algebraic operators are not afl primitive (i.e., many of
them can be defined in terms of athers)—a most satisfactory state of affairs, in our opinion.
As reference [7.3] puts it: “A language definition should start with a few judiciously cho-
sen primitive operators . . . Subsequent development is, where possible, by defining new
operators in terms of . . . previously defined [ones]"—in other words, by definiag useful
shorthands. If the shorthands in question are well chosen, then not only do they save us a
great deal of writing, they also effectively raise the level of abstraction, by allowing us to
talk in terms of certain “bundles™ of concepts that fit together naturally. (They also pave the
way for more efficient implementation.) In this connection, we remind you that, as noted in
Section 7.6, reference [3.3) describes a kind of “reduced instruction set” algebra called A
that is specifically intended to support the systematic definition of more powerful operators
in terms of & very small number of primitives; in fact, it shows that the entire functionality
of the original algebra, together with RENAME, EXTEND, SUMMARIZE, GROUP, and
UNGROUP, can all be achieved with just two primitives called remove and nor.

Back to our summary. We went on to show how the algebraic operators can be com-
bined into expressions that serve a variety of purposes: retrieval, update, and several oth-
ers. We also very briefly discussed the idea of transforming such expressions for
optimization purposes (but we will examine this idea in much more detail in Chapter 18).

¥ Sce Chapter 11, and note in particular that we are appealing here 10 that form of functional dependence
that applies to relation values (as opposed to the more usual form, which applies to relation variables).

m__—

o —— e b —— ot —— et b W

Chapter 7 | Relational Algebra 207

And we explained how the use of WITH could simplify the formulation of complex
expressions; WITH effectively allows us to introduce namés for subexpressions, thereby
allowing us to formulate those complex expressions one step at a time, and yet does not
compromise the algebra’s fundamental nonprocedurality.

We also pointed out that certain of the operators were associative and commutative,
and we showed certain equivalences (e.g., we showed that any relation R is equivalent to
a certain restriction of R and a certain projection of R). We also considered what it means
ta perform joins, unioas, and intersections on just one relation and on no relations at all.

EXERCISES

e
&
£
5
».
i
L
)
s
5
H
a

7.1 Which of the relational operators deﬁned in this chapter have a definition that does not rely on
tuple equality? .

7.2 Given the usual supphers-and~pans databasc. what is the value of the expression S JOIN SP
JOIN P? What is the corresponding prcdlcmc" Warning: There is a wap here.

7.3 Letr bearelation of degree n. How many different projections of r are there?

7.4 Union. intersection, product, and nanufal join are all both commutative and associative. Verify
these claims.

7.5 Consider the expression a JOIN b. If a and b have disjoint héadings. this expression is equiva-
lent to @ TIMES b&: if they have the same heading, it is equivalent to a INTERSECT b. Verify these
claims. What is the expression equivalent to if the heading of a is a proper subset of that of b?

7.6 Of Codd's original set of eight operators, union. difference, product, restrict, and project can be
considered as primitives. Give definitions of natural join, intersect, and (harder') divide in terms of
those primitives. : . : "
7.7 In ordinary arithmetic, multiplication and division are mv:rse Opemmns Are TIMES and
DIVIDEBY inverse operations in the relational algebra? © * ~
7 8 Inordinary amhmcuc there are twa special numbers. land0, wnh the properncs that

n+*1l = 1%*a = n 3
and ‘ '

n*0 = 0+*p = 0
for all numbers n. What relations (if any) play analogous roles in the relational z{lgebm? Investigate
the effect of the algebraic operations discussed in this chapter on those relations.

7.9 . In Section 7.2. we said the relational closure property was important for the same kind of rea-
son that the arithmetic closure property was important. In arithmetic, however, there is one unpleas-
ant situation where the closure property breaks down—anamely, division by zero. Is there any analo-
gous situation in the relational algebra?

7.10 Given that intersect is a special case of join, why do not both operators give the same result
when applied 1o no refations at all? '

7.11 Which (if any) of the following expressions are equivalent?
a. SUMMARIZE r PER 7 { } ADD COUNT AS CT
b, SUMMARIZE r ADD COUNT AS CT
€. SUMMARIZE r BY { } ADD COUNT AS CT

s e -

—— e e, g, s -

T g
i

208 Part Il | The Relational Model

d. EXTEND TABLE_DEE ADD COUNT (r) AS CT ' =
7.12 Letr be the relation denoted by the following expression:
SP GROUP {) AS X

Show what r looks like, given our usual sample value for SP. Also, show the result of; ’E
r UNGROUP X ' “_f
Query Exercises . 2

The remaining exercises are all based on the suppliers-parts-projects database, In each case you are
asked to write a relational algebra expression for the indicated query. (By way of an interesting vari-
ation, you might like to try looking at some of the online answers first and stating what the given
expression mcans in natural language.) For convenience, we repeat the structure of the database in
outline heve:

L R TR B H AR T T AT

s { S#, SNAME, STATUS, CITY }
PRIMARY KEY { S# }

P * { P%, PHAME, COLOR, WEIGHT, CITY }
PRIMARY KEY { P* }

J { %, JINAME, CITY '}
PRIMARY KEY { J% }

ST { S%, P¥, JE, QTY'}
FOREIGN KEY { S%# } REFERENCES S
FOREIGN KEY { P!)} REFERENCES P
FOREIGN REY { 7# } REFERENCES J

4

7.13 Get full details of all projects.
7.14 Get full details of all projects in London.

L i e

.
4

7.15 Get supplier rumbers for suppliers who supply project J1. g
7.16 Get all shipments where the quantity is in the range 300 to 750 inclusive. z
7.17 Get all part-color/part-city pairs. Nore: Here and subsequendy, the term “all" means “all cur- :’é‘
rently represented in the database.” not “all possible.” . =
7.18 Get all supplier-number/part-number/project-number triples such that the indicuted supplier. .,3%,
part. and project are all colocated (L., all in the same city). - e
7.19 Get all supplier-number/part-number/project-number triples such that thc indicated supplier, ‘E,;:‘
part. and project are not all colocated. e?‘.,

7.20 Get all supplier-number/part-number/project-number triples such that no two of the indicated
supplier, part, and project are colocated.

7.21 Get full details for parts supplied by a supplier in London.

7.22 Get part numbers for parts supplied by a supplier in London to a project in London

7.23 Get all pairs of city names such that a supplier in the first city supplies a project in the second
city

7.24 Get part numbers for parts supplled to any project by a supplier in the same city as that
project.

7.25 Get project numbers for projects supplied by at least one supplier not in the same city.

7.26 ' Get all pairs of part numbers such that some supplier supplies both the indicated parts.

e

T CRIURTEN D, OF TR ETINTCS DA KRR I T LY

e o

Chapter 7 | Relational Algebra 209

7.27 Get the total aumber of projects supplied by supplier S1.

7.28 . Get the total quantity of part P1 supplied by supplier S1.

7.29 For each part being supplied to a project, get the part number, the project number, and the cor-
respondxng total quantity. ,

730 Get part numbers of parts supplied to some project in an average quanmy of more than 350.
7.31 Get project names for projects supplied by suppher Sl

7.32 Get colors of parts supplied by supplier S1.

7.33 Get part numbers for parts supplied to any project in London.

7.34 Get project numbers for projects using at least one part available from ;supp[icr Sl

7.35 Get supplier numbers for suppliers supplying at least one part supplied by at least one sup-
plier who supplies at [east one red part.

736 Get supplier numbers for suppliers with a stanis lower than that of supplier S1.
737 Get projcct numbers for pmjecrs whose city is first in the aiphabetic list of such cities.

738 Get project numbers for projects supplied with part Plinan average gquantity greater than the
greatest quantity in which any part is-sl.Ipphed to project J1.

7.39 Get supplier numbers for supplners supplying some project with part P1 in a quantity greater
than the average shipment quantity of part P1 for that project.

740 Get project numbers for projects hdt'supplicd with any red part by any London supplier.

7.41 Get project numbers for projects supplied entu-:ly by suppher SL

742 (et part numbers for parts supplied to all projects in London.

7.43 Get supplier numbers for suppliers who supply the same part to all projects.

7.44 Get project numbers for projects supplied with at least all parts available from supplier S1.
7.45 Get all ciies in which at least one supplier. part, or project is located.

7.46 Get part numbers for parts that are supplied either by a London supplier or 1o a London
project.

747 Get suppher-numbcrlpnn-number pairs such that the mdu:ated suppiier does not supply the
indicated part.

7.48 Get all pairs of supplier numbers, Sx and Sy say, such that Sx and Sy supply exactly the same

- set of pants each. Nore: For simplicity, you might want to use the original suppliers-and-parts data-

base for this exercise, instead of the expanded suppliers-parts-projects database.

749 Get a “grouped” version of all shipments showing, for each supplier-number/part-number
pair, the comresponding project aumbers and quantities in the form of a binary relation.

7.50 Get an “ungrouped™ version of the relation produced in Exercise 7.49.

REFERENCES AND BIBLIOGRAPHY

7.1 E. F. Codd: “Relatlonal Completeness of Data Base Sublanguages.” in Randall J. Rustin (ed.),
Data Base Sysiems, Courant Computer Science Symposia Sgnes 6. Englewood Cliffs, N.J.: Prentice-
Hall (1972).
This is the paper in which Codd first formalily defined the ociginal algebraic operators (defini-
tions did appear in reference [6.1] also, but they were somewhat less formal, or at least less

210

Part IT | The Relational Model

complete). Note: One slightly unfortunate aspect of the paper is that it assumes “for notational
and expository convenience” that the attributes of a relation have a left-to-right ordering and

hence can be identified by their ordinal pesition (though Codd does say that “names rather than

position numbers [should] be used . . . when actually storing or retrieving information™—and
he had previously said much the same thing in reference [6.1]). The paper therefore does not
mention an attribute RENAME operator, and it does not consider the question of result type
inference. Possibly as a consequence of these omissions, the same criticisms can still be leveled
today (a) at many discussions of the algebra in the literature, (b) at today's SQL products. and
(c) to a slightly lesser extent. at the SQL standard as well, .

Additional commentary on this paper appears in Chapter 8, especially in Section 8.4.

7.2 Hugh Darwen (writing as Andrew Warden): “Adventures in Relationland.” in C. J. Date, Rela-
tional Database Writings 1985-1989. Reading, Mass.: Addison-Wesley (1990).

A series of short papers that examine various aspects of the relational model and relational
DBMSs in an original. eatertaining, and informative style.

7.3 Hugh Darwen: “Valid Time and Transaction Time Proposals: Language Design Aspects.” in
Opher Etzion. Sushil Jajodia, and Suryanaryan Sripada (eds.), Temparai Databases: Research and
Practice. New York, N.Y.: Springer-Verlag (1998).

7.4 Hugh Darwen and C. J. Date: “Into the Great Divide,” in C. J. Date and Hugh Darwen. Rela-
tional Database Writings 1989—1991, Reading, Mass.: Addison-Wesley (1992),

This paper analyzes both {a) Codd's original divide as defined in reference {7.1] and (b) 2 gen-
eralization of that operator due to Hali, Hitchcock, and Todd [7.10] that—unlike Codd’s origi-
nal divide-—allowed any relation to be divided by any relation (Codd's original divide was
defined only for the case where the heading of the divisor was a subset of the heading of the
dividend). The paper shows that both operators get into difficulties over empty relatioas, with
the result that neither of them quite solves the problem it was Ongmally intended for (i.e.. nei-
ther of them is quite the counterpart of the universal quantifier it was meant to be), Revised ver-
sions of both operators (the “Small Divide” and the “Great Divide,” respectively) are proposed
lo overcome these problems. Note: As the Tutorial D syntax for these two operators indicaies,
they really are two different operators; that is, the Great Divide is (unfortunately) not quite an
upward-compatible zxtension of the Small Divide. The paper also suggests that the revised
operators no longer merit the name “divide™ In connzction with this last point, see Exercise
1.7. :
For purposes of reference, we give here a definition of Codd's original divide. Let rela-
tions A and B have headings {X.Y} and (Y], respectively (where X and ¥ can be composite).

Then the expression A DIVIDEBY B gives a relation with heading {X) and body consisting of

all tuples (X x} such that a ruple (X x, Yy} appears in A for all tuples (Y y} appearing in B. In
other words. loosely speaking, the result consists of those X values from A whose comrespond-
ing ¥ values (in A) include all ¥ values from B,
7.5 C. L. Date: “Quota Queries” (in three parts), in. C. J. Date, Hugh Darwen, and David
MecGoveran, Relational Database Writings 1994-1997. Reading, Mass.; Addison-Wesley (1998).
A quota query is a query that specifies a desired limit on the cardinality of the result—for
example, the query “Get the three heaviest parts.” This paper discusses one approach to formu-
Iating such queries. Using that approach, “Get the three heaviest parts” can be fonnulated thus:
P QUOTA (3, DESC WEIGHT)

This expression is defined to be shonhand for the following:

A

3
'

oy
E R
o
=5
4]
'
..
3
=3
p-
iy
et
R
e
- o
X
s
\."‘

[
™
~
-
=
i
°
b
.’0"‘.
.2
&
&
3
e
£
]
o
-J%
f%-

Chapter 7 | Relational Algebra 211

{ (EXTEND P :
ADD COUNT ({ P RENAME WEIGHT AS WT) WHERE WT > WEIGHT)
AS § _HEAVIER)
WHERE #_ HEAVIER < 3 } { ALL BUT ¢_HEAVIER }
(where the names WT and #_HEAVIER are arbitrary; given our usual sample data, the result
consists of parts P2, P3, and P6). The paper analyzes the quota query requirement in depth and
proposes several shorthands for dealing with it and related matters. Note: An alternative
approach to formulating quota queries, involving 2 new relational operator called RANK. is
described in reference [3.3].
7.6 R. C. Goldstzin and A. I, Strnad: “The MacAIMS Data Management System.” Proc. 1970 ACM
SICFIDET Workshop on Data Description and Access (November 1970).

' See the annotation to reference [7.71.

© 7.7 A, 1. Stnad: “The Relational Approach to the Manag:mem of Data Bases.” Proc IFIP Con-

gress, Ljubljana, Yugoslav:a (August 1971).
We mention MacAIMS (7.6, 7.7] pnmarily for reasons of historical interest; it seems to have
been the earliest example of a systet;_!_g;_upporting n-ary relations and an algebraic language. The
interesting thing about it is that it Was developed in parailel with. and at lzast partly indepen-
dently of, Codd’s work on the relational model. Unlike Codd's work. however. the MacAIMS
effort seems not to have led 10 any slgmﬁcnnt follow-on activities.
7.8 M. G. Notley: “The Peterlee IS/1 System," JBM UK Scientific Centre Report UKSC-0018
(March 1972), W ‘
See the annotation to reference [7.9]. . _
7.9 S.J. B. Todd: “The Peterlee Relarional Test Vchlcle-—-A System Ovcruew. IBM Sys. 1. I5, No.
4 (1976).
The Peterlee Relational Test Vzhicle PRTV was an expenmcntai svstem d:velOped at the IBM
UK Scientific Centre in Peterlee, England. It was based on an earlier prototype—possibly the
very first implementation of Codd’s ideas—called IS/1 [7.8]. It supported #-ary relations and a
version of the algebra called ISBL (Information System Base Language), which was based on
proposals documented in reference {7.10]. The ideas discussed in the present chapter regarding
relation type inference can be traced back to ISBL. as well as the proposals of reference {7.10).
Significant aspects of PRTV included the following: _ - T
® It supported RENAME, EXTEND, and SUMMARIZE. :
® It incorporated some sophlsncated cxpresslon tmnst‘ormauon techmqucs (see Chapter
18). : :
® It included a lazy evaluation feature, which was important both for optimization and
for view support (see the discussion of WITH in the body of this chapter).
B]tallowed users to define their own operators.
7.10 P. A. V. Hall, P. Hitchcock, and. S, J. P. Todd: “An Algebra of Relations for Machine Computa-
tion,” Conf. Record of the 2nd ACM Symposium on Principles of Programming Languages. Palo
Alto, Calif. (January 1975).
7.11 Anthony Klug: “Equivalence of Relational Algebra and Relational Calculus Query Languages

-

Having Aggregate Functions,” JACM 29, No. 3 (July 1982).

Defines extensions to both the original relational algebra and the original relational calculus
(see Chapter 8) 1o support aggregate operators, and demonstrates the equivalence of the two
extended formalisms.

Y

e ——r—— -,

e

L

e BB e PN

<L AL L ARE

$ CHAPTE

Relational Calculus

LT

8.1 Introduction

8.2 Tuple Calculus .
8.3 Examples | - ’
8.4 Calculus vs. Algebra

8.5 Computational Capabilities

8.6 SQL Facilities e
8.7 Domain Calculus ‘ o S
N 8.8 Query-By-Example ' o ‘i:
“ 8.9 Summary - ST |
Exercises ‘_ . E
References and Bibliography" 4

81 INTRODUCTION S - 1
Relationaf caicuius is an altetnative to relational algebra. The main difference between the ‘
two is as foliows: Whereas the algebra provides a set of explicit operators—join, union,
project, and so on—ihat can be used to teil the system how to construct sofé desired rela- g
tion from certain given relations, the calculus, by contrast, merely provides a notation for 1

stating the definition of that desired relation in rerms of those given relations. For exam-
ple, consider the query “Get supplier numbers and cities for suppliers who supply part
P2.” An algebraic formulation of that query might specify operations as follows {we delib~
erately do not use the formal syntax of Chapter 7):

1. Join suppliers and shipments over S#.
2. Restrict the result of that join to tuples for part P2, &
3. Project the result of that restriction over S# and CITY.

!

214

Part [T | The Relational Model

A calculus fc;rmulation. by contrast, might state simply:

-~

Get S# and CITY for suppliers such that there exists a shipment SP with the same
S# value and with P# value P2.

In this latter formulation, the user has merely stated the defining characteristics of the
desired result, and has left it to the system to decide exactly what joins, restrictions, and
so on, must be executed, in what sequence, in‘ order to construct that result. Thus, we
might say that—at least superficially—the calculus formulation is descriptive, while the
algebraic one is prescriptive: The calculus simply describes what the problem is, the alge-
bra prescribes a procedure for solving that problem. Or, very informally: The algebra is
procedural (admittedly high-level, but still procedural); the calculus is nonprocedural.

However, we stress the point that the foregoing differences are only superficial. The
fact is, the aigebra and the calculus are logically equivalent: For every algebraic expres-
sion there is an equivalent calculus one, for every calculus expression there is an equiva-
lent algebraic one. There is a one-to-one comrespondence between the two. Thus, the dif-
ferences are really just a matter of sryle: The calculus is arguably closer to naturdl
language, the algebra is perhaps more like a programming language. But, to repeat, such
differences are more apparent than real: in particular, neither approach is truly more non-
procedural than the other. We will exa.nune this question of equivalence in detail in Sec-
tion 8.4.

Relational calculus is based ona branch ot‘ mathemaucal lognc callcd predicate cal-
culus. The idea of using predicate calculus as the basis for a query language appears to
have originated in a paper by Kuhns {8.6). The concept of a specifically relatrional calcu-
lus—that is, an applied form of predicate calculus specifically tailored to relational data-
bases-—was first proposed by Codd in reference [6.1]; a language explicitly based on that
calculus called “Data Sublanguage ALPHA" was also presented by Codd in another
paper. reference {8.1]. ALPHA itself was never implemented, but a language called QUEL
(8.5, 8.10-8.12]—which certainly was implemented and for some time was a serious
competitor to SQL—was very similar to it; indeed. QUEL was much influenced by
ALPHA.

A fundamental feature of the calculus is the range variable. Briefly, a range variable
is a variable that “ranges over” some specified relation (i.e., it is a variable whose permitted
values are tuples of that relation). Thus, if range variable V ranges over relation . then, at
any given time, the expression “V"* denotes some tuple of . For example, the query “Get
supplier numbers for suppliers in London” might be expressed in QUEL as follows:

RANGE OF 5X IS § ;
RETRIEVE (SX.S#) WHERE SX.CITY = "London” ;

The sole range variable here is SX, and it ranges over the relation that is the current
value of reivar S (the RANGE statement is a definition of that range variable). The
RETRIEVE statement can thus be paraphrased: “For every possible value of variable SX,
retrieve the S# component of that value, if and only if the CITY component of that value
is London.” '

Because of its reliance on range variables whose values are tuples (and to distinguish
it from the domain calculus—see the next paragraph), the original relational calculus has

¥ w‘é‘v@wﬁi‘\’ﬁ!ﬁé&‘ L

Ly
Es

X

L

%

TR AR o s M0 Fr e P TR R died e e g b

R e S AR TR LR L. S

FE

Chapter 8 | Relational Calculus 215

-1
BT S

come to be known as the tuple calculus. The tuple calculus is described in detail in Sec-
tion 8.2. Note; For simplicity, we adopt the convention throughout this book that the terms
calculus and relational calculus, without a “tuple” or “domain™ qualifier, refer to the tuple
calculus specifically (where it makes any difference).

Subsequently, Lacroix and Pirotte {8.7] proposed an alternative version of the calcu-
lus called the domain calculus, in which the range variables range over domains (i.e..
types) instead of relations. (The terminology is illogical: If the domain calculus is so
called for the reason just stated—which it is—then the tuple calculus ought by rights to be
called the relation calculus.) Various domain calculus languages have been proposed in
the literature; probably the best known is Query-By-Example, QBE [8.14] (though QBE
is really something of a hybrid—it incorporates elements of the tuple calculus as well).
Several commercial QBE or “QBE-like” implementations exist. We skctch the domain
calculus jn Section 8.7, and discuss QBE briefly in Section 8.8.

Note: For space reasons, we “omit discussion of calculus analogs of certain topics
from Chapter 7 (e.g., grouping and: nngroupmg) We also omit consideration of calculus-
versions of the relational update opetators You can find a discussion of such matters in
reference {3.3). :

8.2 TUPLE CALCULUS
As with our discussions of the algebra in C;:apter 7, we first introduce a concrete syntax—
patterned after, though deliberately not quite identical to, the calculus version of Tutorial
D defined in Appendix A of reference (3.3]—and then go on to discuss semantics. The
subsection immediately following discusses syntax, the remaining subsections consider
semantics.

Syntax

Note: Many of the syntax rules given in prose form in this subsection will not make much
sense until you have studied some of the semantic material that comes later. However, we
gather them all here for purposes of subsequent'reference. -

It is convenient to begin by repeating the syntax of <relation exp>s from Chapter 7:

<relation exp> ’
s:= RELATION { <tuple exp cammal;st> }
<relvar name>
<relation op inv>
<with exp>
<introduced rame>
{ <relation exp>)

In other words, the syntax of <relation exp>s is the same as before; however, one of
the most important cases, <relation op inv>, which is the only one we discuss in this
chapter in any detail, now has a very different definition, as we will see.

<range var def>

L RANGEVAR <range var nams>
RANGES OVER <relation exp commalist> ;

Part Il | The Relational Model

A <range var name> can be used as a <tuple exp>,! but only in certain contexis—
namely: '
Preceding the dot qualifier in a <range attribute ref>
Immediately following the quantifier in a <quantified bool exp>
As an operand within a <bool exp> L

As a <proto tuple> or as an <exp> (or an operand within an <exp>) within a <profo

tuple>
<range attribute ref>

1= <range var name> . <attribute name> .
: : [&S <attribute name> |

A <range aitribure ref> can be used as an <exp>, but only in certain contexts—
namely:
_ m As an operand withina <bool exp>
® As a <proto tuple> or as an <exp> (or an operand within an <exp>) within 2 <profo
tuple> : ‘
<bool exp>) .
1™ ... all the usual possibilities, together with:
| <quantified bool exp> :

References to range variables within a <bool exp> can be free within that <bool

exp> only if both of the following are truc:.

. ® The <bool exp> appears immediately within a <relation op inv> (i.e., the <bool.
exp> immédiately follows the keyword WHERE).- :) '
m A reference (necessarily free) to that very same range variable appears immediately
within the <profo tuple> immediately contained within that very same <relation op
inv> (i.c.. the <proto tuple> immediately precedes the keyword WHERE). ¢

Tenninology: In the ‘context of the relational calculus (either version), <bool exp>s
are often called well-formed formulas or WFFs (pronounced “weffs™). We will use this

term ourselves in much of what follows.

<quantified bool exp> -
tiw <quantifier> <range var name> (<bool exp> }

<gquantifier>
:ym= EXISTS | FORALL

<relation op inv>
R L <proto tuple> [WHERE <bool exp> |

As in the algebra of Chapter 7, 2 <relation op inv> is one form of <relation exp>, but
as noted earlier we are giving ita different definition here.

<proto tuple>

see the body of the text

! We do not spell out the details of <tuple exp>s. trusting that examples will be sufficient to give the gen-
eral idea: for reasons thag are unimportant here. however, we do not use exactly the same synlax as we did

in previous chapters.

5 e hidh Y
Y

Merde

creT o By WAL

;"é-
&
<
A
.{_
i
2
%
£
=
3
4
3
& §
=t
29
Pl
&
£
-
&1

Sl et

Chapter 8 | Relational Calculus 217

All references to range variables appearing immediately within a <proto tuple> must
be free within that <proto tuple>. Note: “Proto tuple” stands for “prototype tuple™; the

_ term is apt but not standard.

Range Variables

Here are some sample range variable definitions (expressed as usual in terms of suppliers
and parts):

RANGEVAR SX RANGES OVER § ;

RANGEVAR SY RANGES OVER S ;

RANGEVAR SPX RANGES OVER SP ;

RANGEVAR SPY RANGES OVER S°P ;
RANGEVAR PX RANGES OVER P ;

RANGEVAR SU RANGES OVER
(SX WHERE SX.CITY & 'London') ,
{ SX WHERE EXISTS SPX (SPX.S# = SX.Sk AND
i SPX.PE = PH (P1'))) i
Range variable SU in this last exaiﬁjﬁlc,is defined to range over the union of the set of
supplier tuples for suppliers who are located in London and the set of supplier tuples for
suppliers who supply part P1. Observe that the definition of range variable SU makes use
of the range variables SX and SPX. Note too that in such “union-style™ definitions, the
relations to be “unioned” must (of course) all be of the same type.
Note: Range variables are not variables in the usual programming language sense.

_ they are variables in the sense of logic. In fact, they are analogous, somewhat, to the

parameters to predicates as discussed in Chapter 3: the difference is that the parameters of
Chapter 3 stand for values from the applicable domain (whatever that might be), whereas
range variables in the tuple calculus stand specifically for tuples.

Throughout the rest of this chapter, we will assume that the range variable definitions
siown in this subsection are in effect. We note that in a real language there would have to

_be some rules regarding the scope of such definitions. We ignore such matters in the

present chapter (except in SQL contexts). .

Free and Bound Variable References

Every reference to a range variable is either free or bound (within some context—in par-
ticular, within some WEFF). We explain this notion in purely syntactic terms in this subsec-
tion, then go on to discuss its semantic significance in subsequent subsections.

Let V be a range variable and let p and g be WFFs. Then:.

m References to V in NOT p are free or bound within that WEF according as they are
free or bound in p. References to Vin p AND g and p OR g are free or bound in those
WFFs according as they are free or bound in p or g, as applicable.

. w References to V that are free in p are bound in EXISTS V (p) and FORALL V (p).
Other references to range variables in p are free or bound in EXISTS V (p) and
FORALL V (p) according as they are free or bound in p.

" For completeness, we need to add the following:

218 Part [T [The Relational Model

® The sole reference to V in the <range var name> V is free within that <range var -
name>.

® The solé€ reference to V in the <range attnbute refb VA is free within that <range
attribute ref>.

» If a reference to V is free in some expression exp, that reference is also free in any
expression exp’ that immediately contains exp as a subexpression, unless exp intro-
duces a quannﬁer that makes that reference bound instead.

Here are some examples of WFFs containing range variable references:
® Simple comparisons:
SX.S¢ = 5§ ('sS1")
SX.SF = SPX.S#
SPX.P# = PX.B}
All references to SX, PX, and SPX are free in these examples.
® Boolean combinations of simple comparisons: .,
PX.WEIGHT < WEIGHT (15.5) AND PX.CITY = ‘Oslo’
NOT { SX.CITY = ‘London’')
SX.S# = SPX.S§ AND SPX.P# # PX.P#
PX.COLOR = COLOR {'Red’) OR PX.CITY = *Londan’
Again, all references to SX, PX, and SPX here are free.

® Quantified WFFs:
EXISTS 5PX (3PX.S5# = SX.5# AND SPX.Pf = Pl ('PZ‘))

P

FORALL PX (PX.COLOR = COLOR (‘'Red'))}

The references to SPX and PX in these two examples are bound, the reference to SX is
free, See the subsection “Quantifiers” immediately following.

Quantifiers

There are two quantifiers, EXISTS and FORALL,; EXISTS is the existential quantifier,
FORALL is the universal quantifier,” Basically, if p is a WFF in w}uch Vis frce then

EXISTS V (p)
and

FORALL V { p)

are both valid WFFs, and V is bound in both of them. The first means: There exists at least
one value of V that makes p true. The second means:- For all values of V, p is true. For

2 The term quantifier denves from the verb to guansfy, which means, Joosely, “to say how many.” The
- symbols 3 (“backward E') and ¥ (“upside-down A") are often used in place of EXISTS and FORALL,
T respectively.

oty

TN IV (RIS TR T S RPN R M P A NS T DR e Y

S0tk e 30 o

S P
ot

)
[P,

Chapter 8 [Relational Calculus 219

example, suppose the variable V ranges over the set “Members of the U.S. Senate in 2003,”
and suppose p is the WFF “V is female” (we are not trying to use our formal syntax here!),
Then EXISTS V (p) and FORALL V (p) are both valid WFFs, and they evaluate to TRUE
and FALSE, re5pectwely -

Look again at the EXISTS example from the end of the prewous subsection:

EXISTS SPX { SPX.S# = SX,S# AND SpX.P# = P# 1'92-))
It follows from the foregoing that we can read this WFF as follows:

There exists a tuple SPX, say. in the current value of relvar SP!.such that the S#
value in that tuple SPX is equal to the value of $X.S#—whatever that might be—
and the P# value in that tuple SPX is P2.

Each reference to SPX here is bound. The single reference to SX is free.

We define EXISTS formnlly as an iterated OR. In other words, if (a) r is a relation
with tuples ¢], 12, ..., tm, (b) V is'2d’range variable that ranges over r; and (c) p(V) is a WFF
in which Voccurs as a free vannble. then the WFF - ,

EXISTS V(P (V)). .~ o

~

is defined to be equivalent to the WFF

FALSE OR p { 1 } OR ...ORp(tu)

Observe in particular that this expressmn evaluates to FALSE. if ris empty (equwalentiy. if

m is zero).
By way of example, suppose relation r contains leSt the followmv tup!cs (we depart
here from our usual syntax for slmpllc:ty)

(1,2, 3)

{ 1' 2' ‘ , :

(1, 3, 4) .
Suppose the three attributes, in left-to-right order as shown, are called 4; B. and C, respec- &
tively, and every attribute is of type INTEGER. Then thc folIowmg WFFs have the indi- (=
cated values: : S N -

EXISTS V (V.C > 1) 1 TRUE
EXISTS V (V.B >]). s+ .FALSE
EXISTS V (¥.A > 1]’ OR ¥.C = 4)} : TRUE

We turn now to FORALL, Here to repeat is the FORALL example from the end of
the previous subsection:

FORALL PX { PX.COLOR = COLOR {'Red'))
We can read this WFF as follows:

For all tuples PX, say, in the current value of relvar B, the COLOR value in that
tuple PX is Red. e :

The two references to PX here are both bound,

220 Part Il | The Relational Model

Just as we define EXISTS as an iterated OR, so we define FORALL as an iterated
AND, In other words, if 7 ¥, and p(V) are as before (in our discussion of EXISTS), then the
WFF

TORALL V (p (V))

is defined to be equivalent to the WFF _
TRUE AND p (t1) AND ... AND p { tm)

Observe in particular that this expressmn evaluates to TRUE if r is empty (equivalently, if
m is zero).

By way of etample. Iet relation r be as for our EXISTS examples Then the following
WFFs have the indicnted values:

FORALL V (V.4 > 1) : : FALSE

FORALL V { V.B > 1) : TRUE
FORALL V { V.A = 1 AND V.C > 2) : TROE

Nore: We support both quantifiers purely for convenience—it is not logically neces-
sary to support both bccause each can be defined in terms of the olher To be spec1ﬁc the
equwalence ')

romnvtp) m NOT EXISTS V { NOT p }

{Iootely. “ail Vs satisfy p” is equivalent to “no V’s do not sansfy p") shows that any WFF ~
involving FORALL ‘can always be replaced by an equivalent WFF involving EXISTS
‘instead. and vice versa. For example, the (true) statement “For all integers x, there exists an
integer y such that y > . (i.e., every integer has a greater integer) is equivalent to the state-
ment “There does not exist an integer x such that there does not exist an integer y such that

y > x" (i.e.. there is no greatest integer). However, some problems are more naturally for-
mulated in terms of FORALL and others in terms of EXISTS; to be more specific, if one of
the quantifiers is not available, we will sometimes find ourselves having to use double
negation (as the foregoing example illustrates), and double negation is always tricky. In
practice, therefore, it is desirable to support both.

Free and Bound Variable References Revisited
Suppose x ranges over the set of all integers, and consider the WFF
EXISTS x (x> 3) '

Observe now that x here is a kind of dummy—it serves only to link the boolean expression
inside the parentheses to the quantifier outside. The WFF simply states that there exists
some integer, x say, that is greater than three. Note, therefore, that the meaning of this
WFF would remain totally unchanged if all references to x were replaced by references to
some other variable y. In other words, the WEF

EXISTS y (¥ > 3)

is semantically identical to the one shown previously.

|
|
|
o
..|‘

